Loading…
The contribution of bone marrow-derived cells to the tumor vasculature in neuroblastoma is matrix metalloproteinase-9 dependent
The contribution of the tumor stroma to cancer progression has been increasingly recognized. We had previously shown that in human neuroblastoma tumors orthotopically implanted in immunodeficient mice, stromal-derived matrix metalloproteinase-9 (MMP-9) contributes to the formation of a mature vascul...
Saved in:
Published in: | Cancer research (Chicago, Ill.) Ill.), 2005-04, Vol.65 (8), p.3200-3208 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The contribution of the tumor stroma to cancer progression has been increasingly recognized. We had previously shown that in human neuroblastoma tumors orthotopically implanted in immunodeficient mice, stromal-derived matrix metalloproteinase-9 (MMP-9) contributes to the formation of a mature vasculature by promoting pericyte recruitment along endothelial cells. Here we show that MMP-9 is predominantly expressed by bone marrow-derived CD45-positive leukocytes. Using a series of bone marrow transplantation experiments in MMP-9(+/+) and MMP-9(-/-) mice xenotransplanted with human neuroblastoma tumors, we show that bone marrow-derived MMP-9 is critical for the recruitment of leukocytes from bone marrow into the tumor stroma and for the integration of bone marrow-derived endothelial cells into the tumor vasculature. Expression of MMP-9 by bone marrow-derived cells in the tumor stroma is also critical for the formation of a mature vasculature and coverage of endothelial cells with pericytes. Furthermore, in primary human neuroblastoma tumor specimens of unfavorable histology, we observed a higher level of tumor infiltration with MMP-9 expressing phagocytic cells and a higher degree of coverage of endothelial cells by pericytes when compared with tumor specimens with a favorable histology. Taken together, the data show that in neuroblastoma, MMP-9 plays a critical role in the recruitment of bone marrow-derived cells to the tumor microenvironment where they positively contribute to angiogenesis and tumor progression. |
---|---|
ISSN: | 0008-5472 1538-7445 |
DOI: | 10.1158/0008-5472.CAN-04-3770 |