Loading…
Flexible Modeling via a Hybrid Estimation Scheme in Generalized Mixed Models for Longitudinal Data
To circumvent the computational complexity of likelihood inference in generalized mixed models that assume linear or more general additive regression models of covariate effects, Laplace's approximations to multiple integrals in the likelihood have been commonly used without addressing the issu...
Saved in:
Published in: | Biometrics 2006-03, Vol.62 (1), p.159-167 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To circumvent the computational complexity of likelihood inference in generalized mixed models that assume linear or more general additive regression models of covariate effects, Laplace's approximations to multiple integrals in the likelihood have been commonly used without addressing the issue of adequacy of the approximations for individuals with sparse observations. In this article, we propose a hybrid estimation scheme to address this issue. The likelihoods for subjects with sparse observations use Monte Carlo approximations involving importance sampling, while Laplace's approximation is used for the likelihoods of other subjects that satisfy a certain diagnostic check on the adequacy of Laplace's approximation. Because of its computational tractability, the proposed approach allows flexible modeling of covariate effects by using regression splines and model selection procedures for knot and variable selection. Its computational and statistical advantages are illustrated by simulation and by application to longitudinal data from a fecundity study of fruit flies, for which overdispersion is modeled via a double exponential family. |
---|---|
ISSN: | 0006-341X 1541-0420 |
DOI: | 10.1111/j.1541-0420.2005.00391.x |