Loading…

Broadband reflectance measurements of light penetration, blood oxygenation, hemoglobin concentration, and drug concentration in human intraperitoneal tissues before and after photodynamic therapy

We evaluate Photofrin-mediated photodynamic therapy (PDT) in a phase 2 clinical trial as an adjuvant to surgery to treat peritoneal carcinomatosis. We extract tissue optical [reduced scattering absorption and attenuation coefficients and physiological [blood oxygen saturation total hemoglobin concen...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Biomedical Optics 2005-01, Vol.10 (1), p.014004-0140013
Main Authors: Wang, Hsing-Wen, Zhu, Timothy C, Putt, Mary E, Solonenko, Michael, Metz, James, Dimofte, Andreea, Miles, Jeremy, Fraker, Douglas L, Glatstein, Eli, Hahn, Stephen M, Yodh, Arjun G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-9c71bb1d92893ef98eab8f42704e3249056453bf40050a04ed5a6663d433964c3
cites cdi_FETCH-LOGICAL-c462t-9c71bb1d92893ef98eab8f42704e3249056453bf40050a04ed5a6663d433964c3
container_end_page 0140013
container_issue 1
container_start_page 014004
container_title Journal of Biomedical Optics
container_volume 10
creator Wang, Hsing-Wen
Zhu, Timothy C
Putt, Mary E
Solonenko, Michael
Metz, James
Dimofte, Andreea
Miles, Jeremy
Fraker, Douglas L
Glatstein, Eli
Hahn, Stephen M
Yodh, Arjun G
description We evaluate Photofrin-mediated photodynamic therapy (PDT) in a phase 2 clinical trial as an adjuvant to surgery to treat peritoneal carcinomatosis. We extract tissue optical [reduced scattering absorption and attenuation coefficients and physiological [blood oxygen saturation total hemoglobin concentration (THC), and photosensitizer concentration properties in 12 patients using a diffuse reflectance instrument and algorithms based on the diffusion equation. Before PDT, in normal intraperitoneal tissues and THC ranged between 32 to 100 and 19 to 263 M, respectively; corresponding data from tumor tissues ranged between 11 to 44 and 61 to 224 M. Tumor is significantly lower than oxygenation of normal intraperitoneal tissues in the same patients. The mean (±standard error of mean) penetration depth ( ) in millimeters at 630 nm is 4.8(±0.6) for small bowel, 5.2 (±0.67) for large bowel, 3.39(±0.29) for peritoneum, 5.19(±1.4) for skin, 1.0(±0.1) for liver, and 3.02(±0.66) for tumor. in micromolars is 4.9(±2.3) for small bowel, 4.8(±2.3) for large bowel, 3.0 (±1.0) for peritoneum, 2.5(±0.9) for skin, and 7.4(±2.8) for tumor. In all tissues examined, mean tends to decrease after PDT, perhaps due to photobleaching. These results provide benchmark tissue optical property data, and demonstrate the feasibility of measurements during clinical PDT treatments. ©
doi_str_mv 10.1117/1.1854679
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67767740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29817566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-9c71bb1d92893ef98eab8f42704e3249056453bf40050a04ed5a6663d433964c3</originalsourceid><addsrcrecordid>eNqFkU-L1TAUxYMozvh04ReQrATBziTNn6ZLZ3DUYeDNQtclbW5fI21SkxTmfb75YubZMuJKCNzDye8eEg5Cbym5oJRWl_SCKsFlVT9D51RIUpSlos-zJooVTEp1hl7F-JMQomQtX6IzKhSvhBLn6PEqeG1a7QwO0I_QJe06wBPouASYwKWIfY9HexgSnsFBCjpZ7z7idvTeYP9wPIDbrAEmfxh9ax3ufI5xT_Ap34Tl8K-PMzgskz6JbM0QbPIO9IiTjXGBiFvofYA_67pPEPA8-OTN0enJdjgNkLeOr9GLXo8R3mxzh37cfP5-_bW423_5dv3prui4LFNRdxVtW2rqUtUM-lqBblXPy4pwYCWviZBcsLbnhAiis2mEllIywxmrJe_YDr1fc-fgf-XXpWaysYNx1A78EhtZVflw8l-wrBWtRI7eoQ8r2AUfYy6gmYOddDg2lDSnahvabNVm9t0WurQTmL_k1mUGyhWIs4Wn69ur_f3NPldPKCHroPmHfNXsN4SKsUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29817566</pqid></control><display><type>article</type><title>Broadband reflectance measurements of light penetration, blood oxygenation, hemoglobin concentration, and drug concentration in human intraperitoneal tissues before and after photodynamic therapy</title><source>SPIE Digital Library</source><creator>Wang, Hsing-Wen ; Zhu, Timothy C ; Putt, Mary E ; Solonenko, Michael ; Metz, James ; Dimofte, Andreea ; Miles, Jeremy ; Fraker, Douglas L ; Glatstein, Eli ; Hahn, Stephen M ; Yodh, Arjun G</creator><creatorcontrib>Wang, Hsing-Wen ; Zhu, Timothy C ; Putt, Mary E ; Solonenko, Michael ; Metz, James ; Dimofte, Andreea ; Miles, Jeremy ; Fraker, Douglas L ; Glatstein, Eli ; Hahn, Stephen M ; Yodh, Arjun G</creatorcontrib><description>We evaluate Photofrin-mediated photodynamic therapy (PDT) in a phase 2 clinical trial as an adjuvant to surgery to treat peritoneal carcinomatosis. We extract tissue optical [reduced scattering absorption and attenuation coefficients and physiological [blood oxygen saturation total hemoglobin concentration (THC), and photosensitizer concentration properties in 12 patients using a diffuse reflectance instrument and algorithms based on the diffusion equation. Before PDT, in normal intraperitoneal tissues and THC ranged between 32 to 100 and 19 to 263 M, respectively; corresponding data from tumor tissues ranged between 11 to 44 and 61 to 224 M. Tumor is significantly lower than oxygenation of normal intraperitoneal tissues in the same patients. The mean (±standard error of mean) penetration depth ( ) in millimeters at 630 nm is 4.8(±0.6) for small bowel, 5.2 (±0.67) for large bowel, 3.39(±0.29) for peritoneum, 5.19(±1.4) for skin, 1.0(±0.1) for liver, and 3.02(±0.66) for tumor. in micromolars is 4.9(±2.3) for small bowel, 4.8(±2.3) for large bowel, 3.0 (±1.0) for peritoneum, 2.5(±0.9) for skin, and 7.4(±2.8) for tumor. In all tissues examined, mean tends to decrease after PDT, perhaps due to photobleaching. These results provide benchmark tissue optical property data, and demonstrate the feasibility of measurements during clinical PDT treatments. ©</description><identifier>ISSN: 1083-3668</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.1854679</identifier><identifier>PMID: 15847585</identifier><identifier>CODEN: JBOPFO</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Chemotherapy, Adjuvant ; diffuse reflectance spectroscopy ; Dihematoporphyrin Ether - pharmacokinetics ; Dihematoporphyrin Ether - therapeutic use ; Hematoporphyrin Photoradiation ; Hemoglobins - metabolism ; Humans ; Intestines - metabolism ; intraperitoneal optical properties ; Light ; Liver - metabolism ; Osmolar Concentration ; Oxygen - blood ; peritoneal carcinomatosis ; Peritoneal Neoplasms - drug therapy ; Peritoneal Neoplasms - surgery ; Peritoneum - metabolism ; photodynamic therapy ; photodynamic therapy dosimetry ; physiological properties ; Scattering, Radiation ; Skin - metabolism ; Tissue Distribution</subject><ispartof>Journal of Biomedical Optics, 2005-01, Vol.10 (1), p.014004-0140013</ispartof><rights>2005 Society of Photo-Optical Instrumentation Engineers</rights><rights>Copyright 2005 Society of Photo-Optical Instrumentation Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-9c71bb1d92893ef98eab8f42704e3249056453bf40050a04ed5a6663d433964c3</citedby><cites>FETCH-LOGICAL-c462t-9c71bb1d92893ef98eab8f42704e3249056453bf40050a04ed5a6663d433964c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.spiedigitallibrary.org/journalArticle/Download?urlId=10.1117/1.1854679$$EPDF$$P50$$Gspie$$H</linktopdf><linktohtml>$$Uhttp://dx.doi.org/10.1117/1.1854679$$EHTML$$P50$$Gspie$$H</linktohtml><link.rule.ids>314,776,780,18944,27901,27902,55361,55362</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15847585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Hsing-Wen</creatorcontrib><creatorcontrib>Zhu, Timothy C</creatorcontrib><creatorcontrib>Putt, Mary E</creatorcontrib><creatorcontrib>Solonenko, Michael</creatorcontrib><creatorcontrib>Metz, James</creatorcontrib><creatorcontrib>Dimofte, Andreea</creatorcontrib><creatorcontrib>Miles, Jeremy</creatorcontrib><creatorcontrib>Fraker, Douglas L</creatorcontrib><creatorcontrib>Glatstein, Eli</creatorcontrib><creatorcontrib>Hahn, Stephen M</creatorcontrib><creatorcontrib>Yodh, Arjun G</creatorcontrib><title>Broadband reflectance measurements of light penetration, blood oxygenation, hemoglobin concentration, and drug concentration in human intraperitoneal tissues before and after photodynamic therapy</title><title>Journal of Biomedical Optics</title><addtitle>J Biomed Opt</addtitle><description>We evaluate Photofrin-mediated photodynamic therapy (PDT) in a phase 2 clinical trial as an adjuvant to surgery to treat peritoneal carcinomatosis. We extract tissue optical [reduced scattering absorption and attenuation coefficients and physiological [blood oxygen saturation total hemoglobin concentration (THC), and photosensitizer concentration properties in 12 patients using a diffuse reflectance instrument and algorithms based on the diffusion equation. Before PDT, in normal intraperitoneal tissues and THC ranged between 32 to 100 and 19 to 263 M, respectively; corresponding data from tumor tissues ranged between 11 to 44 and 61 to 224 M. Tumor is significantly lower than oxygenation of normal intraperitoneal tissues in the same patients. The mean (±standard error of mean) penetration depth ( ) in millimeters at 630 nm is 4.8(±0.6) for small bowel, 5.2 (±0.67) for large bowel, 3.39(±0.29) for peritoneum, 5.19(±1.4) for skin, 1.0(±0.1) for liver, and 3.02(±0.66) for tumor. in micromolars is 4.9(±2.3) for small bowel, 4.8(±2.3) for large bowel, 3.0 (±1.0) for peritoneum, 2.5(±0.9) for skin, and 7.4(±2.8) for tumor. In all tissues examined, mean tends to decrease after PDT, perhaps due to photobleaching. These results provide benchmark tissue optical property data, and demonstrate the feasibility of measurements during clinical PDT treatments. ©</description><subject>Algorithms</subject><subject>Chemotherapy, Adjuvant</subject><subject>diffuse reflectance spectroscopy</subject><subject>Dihematoporphyrin Ether - pharmacokinetics</subject><subject>Dihematoporphyrin Ether - therapeutic use</subject><subject>Hematoporphyrin Photoradiation</subject><subject>Hemoglobins - metabolism</subject><subject>Humans</subject><subject>Intestines - metabolism</subject><subject>intraperitoneal optical properties</subject><subject>Light</subject><subject>Liver - metabolism</subject><subject>Osmolar Concentration</subject><subject>Oxygen - blood</subject><subject>peritoneal carcinomatosis</subject><subject>Peritoneal Neoplasms - drug therapy</subject><subject>Peritoneal Neoplasms - surgery</subject><subject>Peritoneum - metabolism</subject><subject>photodynamic therapy</subject><subject>photodynamic therapy dosimetry</subject><subject>physiological properties</subject><subject>Scattering, Radiation</subject><subject>Skin - metabolism</subject><subject>Tissue Distribution</subject><issn>1083-3668</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkU-L1TAUxYMozvh04ReQrATBziTNn6ZLZ3DUYeDNQtclbW5fI21SkxTmfb75YubZMuJKCNzDye8eEg5Cbym5oJRWl_SCKsFlVT9D51RIUpSlos-zJooVTEp1hl7F-JMQomQtX6IzKhSvhBLn6PEqeG1a7QwO0I_QJe06wBPouASYwKWIfY9HexgSnsFBCjpZ7z7idvTeYP9wPIDbrAEmfxh9ax3ufI5xT_Ap34Tl8K-PMzgskz6JbM0QbPIO9IiTjXGBiFvofYA_67pPEPA8-OTN0enJdjgNkLeOr9GLXo8R3mxzh37cfP5-_bW423_5dv3prui4LFNRdxVtW2rqUtUM-lqBblXPy4pwYCWviZBcsLbnhAiis2mEllIywxmrJe_YDr1fc-fgf-XXpWaysYNx1A78EhtZVflw8l-wrBWtRI7eoQ8r2AUfYy6gmYOddDg2lDSnahvabNVm9t0WurQTmL_k1mUGyhWIs4Wn69ur_f3NPldPKCHroPmHfNXsN4SKsUo</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Wang, Hsing-Wen</creator><creator>Zhu, Timothy C</creator><creator>Putt, Mary E</creator><creator>Solonenko, Michael</creator><creator>Metz, James</creator><creator>Dimofte, Andreea</creator><creator>Miles, Jeremy</creator><creator>Fraker, Douglas L</creator><creator>Glatstein, Eli</creator><creator>Hahn, Stephen M</creator><creator>Yodh, Arjun G</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20050101</creationdate><title>Broadband reflectance measurements of light penetration, blood oxygenation, hemoglobin concentration, and drug concentration in human intraperitoneal tissues before and after photodynamic therapy</title><author>Wang, Hsing-Wen ; Zhu, Timothy C ; Putt, Mary E ; Solonenko, Michael ; Metz, James ; Dimofte, Andreea ; Miles, Jeremy ; Fraker, Douglas L ; Glatstein, Eli ; Hahn, Stephen M ; Yodh, Arjun G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-9c71bb1d92893ef98eab8f42704e3249056453bf40050a04ed5a6663d433964c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Chemotherapy, Adjuvant</topic><topic>diffuse reflectance spectroscopy</topic><topic>Dihematoporphyrin Ether - pharmacokinetics</topic><topic>Dihematoporphyrin Ether - therapeutic use</topic><topic>Hematoporphyrin Photoradiation</topic><topic>Hemoglobins - metabolism</topic><topic>Humans</topic><topic>Intestines - metabolism</topic><topic>intraperitoneal optical properties</topic><topic>Light</topic><topic>Liver - metabolism</topic><topic>Osmolar Concentration</topic><topic>Oxygen - blood</topic><topic>peritoneal carcinomatosis</topic><topic>Peritoneal Neoplasms - drug therapy</topic><topic>Peritoneal Neoplasms - surgery</topic><topic>Peritoneum - metabolism</topic><topic>photodynamic therapy</topic><topic>photodynamic therapy dosimetry</topic><topic>physiological properties</topic><topic>Scattering, Radiation</topic><topic>Skin - metabolism</topic><topic>Tissue Distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hsing-Wen</creatorcontrib><creatorcontrib>Zhu, Timothy C</creatorcontrib><creatorcontrib>Putt, Mary E</creatorcontrib><creatorcontrib>Solonenko, Michael</creatorcontrib><creatorcontrib>Metz, James</creatorcontrib><creatorcontrib>Dimofte, Andreea</creatorcontrib><creatorcontrib>Miles, Jeremy</creatorcontrib><creatorcontrib>Fraker, Douglas L</creatorcontrib><creatorcontrib>Glatstein, Eli</creatorcontrib><creatorcontrib>Hahn, Stephen M</creatorcontrib><creatorcontrib>Yodh, Arjun G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Biomedical Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hsing-Wen</au><au>Zhu, Timothy C</au><au>Putt, Mary E</au><au>Solonenko, Michael</au><au>Metz, James</au><au>Dimofte, Andreea</au><au>Miles, Jeremy</au><au>Fraker, Douglas L</au><au>Glatstein, Eli</au><au>Hahn, Stephen M</au><au>Yodh, Arjun G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband reflectance measurements of light penetration, blood oxygenation, hemoglobin concentration, and drug concentration in human intraperitoneal tissues before and after photodynamic therapy</atitle><jtitle>Journal of Biomedical Optics</jtitle><addtitle>J Biomed Opt</addtitle><date>2005-01-01</date><risdate>2005</risdate><volume>10</volume><issue>1</issue><spage>014004</spage><epage>0140013</epage><pages>014004-0140013</pages><issn>1083-3668</issn><eissn>1560-2281</eissn><coden>JBOPFO</coden><abstract>We evaluate Photofrin-mediated photodynamic therapy (PDT) in a phase 2 clinical trial as an adjuvant to surgery to treat peritoneal carcinomatosis. We extract tissue optical [reduced scattering absorption and attenuation coefficients and physiological [blood oxygen saturation total hemoglobin concentration (THC), and photosensitizer concentration properties in 12 patients using a diffuse reflectance instrument and algorithms based on the diffusion equation. Before PDT, in normal intraperitoneal tissues and THC ranged between 32 to 100 and 19 to 263 M, respectively; corresponding data from tumor tissues ranged between 11 to 44 and 61 to 224 M. Tumor is significantly lower than oxygenation of normal intraperitoneal tissues in the same patients. The mean (±standard error of mean) penetration depth ( ) in millimeters at 630 nm is 4.8(±0.6) for small bowel, 5.2 (±0.67) for large bowel, 3.39(±0.29) for peritoneum, 5.19(±1.4) for skin, 1.0(±0.1) for liver, and 3.02(±0.66) for tumor. in micromolars is 4.9(±2.3) for small bowel, 4.8(±2.3) for large bowel, 3.0 (±1.0) for peritoneum, 2.5(±0.9) for skin, and 7.4(±2.8) for tumor. In all tissues examined, mean tends to decrease after PDT, perhaps due to photobleaching. These results provide benchmark tissue optical property data, and demonstrate the feasibility of measurements during clinical PDT treatments. ©</abstract><cop>United States</cop><pmid>15847585</pmid><doi>10.1117/1.1854679</doi><tpages>126010</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-3668
ispartof Journal of Biomedical Optics, 2005-01, Vol.10 (1), p.014004-0140013
issn 1083-3668
1560-2281
language eng
recordid cdi_proquest_miscellaneous_67767740
source SPIE Digital Library
subjects Algorithms
Chemotherapy, Adjuvant
diffuse reflectance spectroscopy
Dihematoporphyrin Ether - pharmacokinetics
Dihematoporphyrin Ether - therapeutic use
Hematoporphyrin Photoradiation
Hemoglobins - metabolism
Humans
Intestines - metabolism
intraperitoneal optical properties
Light
Liver - metabolism
Osmolar Concentration
Oxygen - blood
peritoneal carcinomatosis
Peritoneal Neoplasms - drug therapy
Peritoneal Neoplasms - surgery
Peritoneum - metabolism
photodynamic therapy
photodynamic therapy dosimetry
physiological properties
Scattering, Radiation
Skin - metabolism
Tissue Distribution
title Broadband reflectance measurements of light penetration, blood oxygenation, hemoglobin concentration, and drug concentration in human intraperitoneal tissues before and after photodynamic therapy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A02%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20reflectance%20measurements%20of%20light%20penetration,%20blood%20oxygenation,%20hemoglobin%20concentration,%20and%20drug%20concentration%20in%20human%20intraperitoneal%20tissues%20before%20and%20after%20photodynamic%20therapy&rft.jtitle=Journal%20of%20Biomedical%20Optics&rft.au=Wang,%20Hsing-Wen&rft.date=2005-01-01&rft.volume=10&rft.issue=1&rft.spage=014004&rft.epage=0140013&rft.pages=014004-0140013&rft.issn=1083-3668&rft.eissn=1560-2281&rft.coden=JBOPFO&rft_id=info:doi/10.1117/1.1854679&rft_dat=%3Cproquest_cross%3E29817566%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-9c71bb1d92893ef98eab8f42704e3249056453bf40050a04ed5a6663d433964c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29817566&rft_id=info:pmid/15847585&rfr_iscdi=true