Loading…

Ionization potentials of large sodium doped ammonia clusters

In a continuous neat supersonic expansion ammonia clusters are generated and doped with sodium atoms in a pickup cell. Thus clusters of the form Na(NH(3))(n) are produced that are photoionized by a tunable dye laser system. The ions are mass analyzed in a reflectron time-of-flight mass spectrometer,...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2005-04, Vol.122 (13), p.134301-134301
Main Authors: Steinbach, C, Buck, U
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In a continuous neat supersonic expansion ammonia clusters are generated and doped with sodium atoms in a pickup cell. Thus clusters of the form Na(NH(3))(n) are produced that are photoionized by a tunable dye laser system. The ions are mass analyzed in a reflectron time-of-flight mass spectrometer, and the wavelength dependent ion signals serve for the determination of the ionization potentials (IP) of the different clusters in the size range 10< or =n< or =1500. Aside from a plateau for 10< or =n< or =17 and smaller steps at n=24, 35, and 59 on the average a continuous decrease of the IP with cluster size is observed. The IPs in this size range are linear with (n+1)(-13) and extrapolate to IP(n=infinity)=1.66+/-0.01 eV. The slope is consistent with a dielectric continuum model of the solvated electron and the dielectric constant of the solid. The extrapolated IPs are compared with results obtained for negative ammonia cluster ions and metallic solutions in liquid ammonia. Differences are explained by the presence of counterions and their various distances from the solvated electron.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.1863934