Loading…
Anterograde axonal transport of BDNF and NT-3 by retinal ganglion cells: Roles of neurotrophin receptors
Retinal ganglion cells (RGCs) transport exogenous neurotrophins anterogradely to the midbrain tectum/superior colliculus with significant downstream effects. We determined contributions of neurotrophin receptors for anterograde transport of intraocularly injected radiolabeled neurotrophins. In adult...
Saved in:
Published in: | Molecular and cellular neuroscience 2005-05, Vol.29 (1), p.11-25 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Retinal ganglion cells (RGCs) transport exogenous neurotrophins anterogradely to the midbrain tectum/superior colliculus with significant downstream effects. We determined contributions of neurotrophin receptors for anterograde transport of intraocularly injected radiolabeled neurotrophins. In adult rodents, anterograde transport of brain-derived neurotrophic factor (BDNF) was receptor-mediated, and transport of exogenous BDNF and neurotrophin-3 (NT-3) was more efficient, per RGC, in rodents than chicks. RT-PCR and Western blot analysis of purified murine RGCs showed that adult RGCs express the p75 receptor. Anterograde transport of BDNF or NT-3 was not diminished in p75 knock-out mice (with unaltered final numbers of RGCs), but BDNF transport was substantially reduced by co-injected trkB antibodies. In chick embryos, however, p75 antisense or co-injected p75 antibodies significantly attenuated anterograde transport of NT-3 by RGCs. Thus, neither BDNF nor NT-3 utilizes p75 for anterograde transport in adult rodent RGCs, while anterograde NT-3 transport requires the p75 receptor in embryonic chicken RGCs. |
---|---|
ISSN: | 1044-7431 1095-9327 |
DOI: | 10.1016/j.mcn.2005.02.004 |