Loading…
Orthogonal search-based rule extraction (OSRE) for trained neural networks: a practical and efficient approach
There is much interest in rule extraction from neural networks and a plethora of different methods have been proposed for this purpose. We discuss the merits of pedagogical and decompositional approaches to rule extraction from trained neural networks, and show that some currently used methods for b...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2006-03, Vol.17 (2), p.374-384 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c435t-c48c0f3f54a4d891222b969721c075edbf8e44083bfa290482a6d5e5e4bf4ffb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c435t-c48c0f3f54a4d891222b969721c075edbf8e44083bfa290482a6d5e5e4bf4ffb3 |
container_end_page | 384 |
container_issue | 2 |
container_start_page | 374 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 17 |
creator | Etchells, T.A. Lisboa, P.J.G. |
description | There is much interest in rule extraction from neural networks and a plethora of different methods have been proposed for this purpose. We discuss the merits of pedagogical and decompositional approaches to rule extraction from trained neural networks, and show that some currently used methods for binary data comply with a theoretical formalism for extraction of Boolean rules from continuously valued logic. This formalism is extended into a generic methodology for rule extraction from smooth decision surfaces fitted to discrete or quantized continuous variables independently of the analytical structure of the underlying model, and in a manner that is efficient even for high input dimensions. This methodology is then tested with Monks' data, for which exact rules are obtained and to Wisconsin's breast cancer data, where a small number of high-order rules are identified whose discriminatory performance can be directly visualized. |
doi_str_mv | 10.1109/TNN.2005.863472 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67798360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1603623</ieee_id><sourcerecordid>896236488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-c48c0f3f54a4d891222b969721c075edbf8e44083bfa290482a6d5e5e4bf4ffb3</originalsourceid><addsrcrecordid>eNqFkc9rFDEUxwex2Fo9exAkCP46zPbl5yTepLQqlC5oPQ-ZzIs7dTbZJjNo_3uz3YWKB70k4fF53yTvU1XPKCwoBXNydXm5YAByoRUXDXtQHVEjaA1g-MNyBiFrw1hzWD3O-RqACgnqUXVIlVRKKHlUhWWaVvF7DHYkGW1yq7qzGXuS5hEJ_pqSddMQA3m7_Prl7B3xMZFSG0JBAs6ptAWcfsb0I78nlmzucFeqNvQEvR_cgGEidrNJ0brVk-rA2zHj0_1-XH07P7s6_VRfLD9-Pv1wUTvB5VRW7cBzL4UVvTaUMdYZZRpGHTQS-85rFAI077xlBoRmVvUSJYrOC-87fly92eWWa29mzFO7HrLDcbQB45xbbRTjSmhdyNf_JFXTGM0V_BdkGgxwKQr48i_wOs6pDDi35SeUNZybAp3sIJdizgl9u0nD2qbblkK7VdsWte1WbbtTWzpe7GPnbo39Pb93WYBXe8DmYsAnG9yQ77lGFf9i-77nO25AxD9igJeZ8N8MXbPH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912127339</pqid></control><display><type>article</type><title>Orthogonal search-based rule extraction (OSRE) for trained neural networks: a practical and efficient approach</title><source>IEEE Xplore (Online service)</source><creator>Etchells, T.A. ; Lisboa, P.J.G.</creator><creatorcontrib>Etchells, T.A. ; Lisboa, P.J.G.</creatorcontrib><description>There is much interest in rule extraction from neural networks and a plethora of different methods have been proposed for this purpose. We discuss the merits of pedagogical and decompositional approaches to rule extraction from trained neural networks, and show that some currently used methods for binary data comply with a theoretical formalism for extraction of Boolean rules from continuously valued logic. This formalism is extended into a generic methodology for rule extraction from smooth decision surfaces fitted to discrete or quantized continuous variables independently of the analytical structure of the underlying model, and in a manner that is efficient even for high input dimensions. This methodology is then tested with Monks' data, for which exact rules are obtained and to Wisconsin's breast cancer data, where a small number of high-order rules are identified whose discriminatory performance can be directly visualized.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2005.863472</identifier><identifier>PMID: 16566465</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Boolean algebra ; Boolean functions ; Breast cancer ; Computer science; control theory; systems ; Computer Simulation ; Connectionism. Neural networks ; Data mining ; Data visualization ; Decision analysis ; Decision Support Techniques ; Etching ; Exact sciences and technology ; Extraction ; Formalism ; Law ; Legal factors ; Mathematical analysis ; Mathematical models ; Methodology ; Models, Theoretical ; Neural networks ; Neural Networks (Computer) ; Numerical Analysis, Computer-Assisted ; Pattern Recognition, Automated - methods ; rule extraction ; Testing</subject><ispartof>IEEE transaction on neural networks and learning systems, 2006-03, Vol.17 (2), p.374-384</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-c48c0f3f54a4d891222b969721c075edbf8e44083bfa290482a6d5e5e4bf4ffb3</citedby><cites>FETCH-LOGICAL-c435t-c48c0f3f54a4d891222b969721c075edbf8e44083bfa290482a6d5e5e4bf4ffb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1603623$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17601444$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16566465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Etchells, T.A.</creatorcontrib><creatorcontrib>Lisboa, P.J.G.</creatorcontrib><title>Orthogonal search-based rule extraction (OSRE) for trained neural networks: a practical and efficient approach</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>There is much interest in rule extraction from neural networks and a plethora of different methods have been proposed for this purpose. We discuss the merits of pedagogical and decompositional approaches to rule extraction from trained neural networks, and show that some currently used methods for binary data comply with a theoretical formalism for extraction of Boolean rules from continuously valued logic. This formalism is extended into a generic methodology for rule extraction from smooth decision surfaces fitted to discrete or quantized continuous variables independently of the analytical structure of the underlying model, and in a manner that is efficient even for high input dimensions. This methodology is then tested with Monks' data, for which exact rules are obtained and to Wisconsin's breast cancer data, where a small number of high-order rules are identified whose discriminatory performance can be directly visualized.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Boolean algebra</subject><subject>Boolean functions</subject><subject>Breast cancer</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Connectionism. Neural networks</subject><subject>Data mining</subject><subject>Data visualization</subject><subject>Decision analysis</subject><subject>Decision Support Techniques</subject><subject>Etching</subject><subject>Exact sciences and technology</subject><subject>Extraction</subject><subject>Formalism</subject><subject>Law</subject><subject>Legal factors</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Pattern Recognition, Automated - methods</subject><subject>rule extraction</subject><subject>Testing</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkc9rFDEUxwex2Fo9exAkCP46zPbl5yTepLQqlC5oPQ-ZzIs7dTbZJjNo_3uz3YWKB70k4fF53yTvU1XPKCwoBXNydXm5YAByoRUXDXtQHVEjaA1g-MNyBiFrw1hzWD3O-RqACgnqUXVIlVRKKHlUhWWaVvF7DHYkGW1yq7qzGXuS5hEJ_pqSddMQA3m7_Prl7B3xMZFSG0JBAs6ptAWcfsb0I78nlmzucFeqNvQEvR_cgGEidrNJ0brVk-rA2zHj0_1-XH07P7s6_VRfLD9-Pv1wUTvB5VRW7cBzL4UVvTaUMdYZZRpGHTQS-85rFAI077xlBoRmVvUSJYrOC-87fly92eWWa29mzFO7HrLDcbQB45xbbRTjSmhdyNf_JFXTGM0V_BdkGgxwKQr48i_wOs6pDDi35SeUNZybAp3sIJdizgl9u0nD2qbblkK7VdsWte1WbbtTWzpe7GPnbo39Pb93WYBXe8DmYsAnG9yQ77lGFf9i-77nO25AxD9igJeZ8N8MXbPH</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Etchells, T.A.</creator><creator>Lisboa, P.J.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20060301</creationdate><title>Orthogonal search-based rule extraction (OSRE) for trained neural networks: a practical and efficient approach</title><author>Etchells, T.A. ; Lisboa, P.J.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-c48c0f3f54a4d891222b969721c075edbf8e44083bfa290482a6d5e5e4bf4ffb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Boolean algebra</topic><topic>Boolean functions</topic><topic>Breast cancer</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Connectionism. Neural networks</topic><topic>Data mining</topic><topic>Data visualization</topic><topic>Decision analysis</topic><topic>Decision Support Techniques</topic><topic>Etching</topic><topic>Exact sciences and technology</topic><topic>Extraction</topic><topic>Formalism</topic><topic>Law</topic><topic>Legal factors</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Pattern Recognition, Automated - methods</topic><topic>rule extraction</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Etchells, T.A.</creatorcontrib><creatorcontrib>Lisboa, P.J.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Etchells, T.A.</au><au>Lisboa, P.J.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonal search-based rule extraction (OSRE) for trained neural networks: a practical and efficient approach</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2006-03-01</date><risdate>2006</risdate><volume>17</volume><issue>2</issue><spage>374</spage><epage>384</epage><pages>374-384</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>There is much interest in rule extraction from neural networks and a plethora of different methods have been proposed for this purpose. We discuss the merits of pedagogical and decompositional approaches to rule extraction from trained neural networks, and show that some currently used methods for binary data comply with a theoretical formalism for extraction of Boolean rules from continuously valued logic. This formalism is extended into a generic methodology for rule extraction from smooth decision surfaces fitted to discrete or quantized continuous variables independently of the analytical structure of the underlying model, and in a manner that is efficient even for high input dimensions. This methodology is then tested with Monks' data, for which exact rules are obtained and to Wisconsin's breast cancer data, where a small number of high-order rules are identified whose discriminatory performance can be directly visualized.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>16566465</pmid><doi>10.1109/TNN.2005.863472</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-9227 |
ispartof | IEEE transaction on neural networks and learning systems, 2006-03, Vol.17 (2), p.374-384 |
issn | 1045-9227 2162-237X 1941-0093 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_67798360 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Applied sciences Artificial Intelligence Boolean algebra Boolean functions Breast cancer Computer science control theory systems Computer Simulation Connectionism. Neural networks Data mining Data visualization Decision analysis Decision Support Techniques Etching Exact sciences and technology Extraction Formalism Law Legal factors Mathematical analysis Mathematical models Methodology Models, Theoretical Neural networks Neural Networks (Computer) Numerical Analysis, Computer-Assisted Pattern Recognition, Automated - methods rule extraction Testing |
title | Orthogonal search-based rule extraction (OSRE) for trained neural networks: a practical and efficient approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A57%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonal%20search-based%20rule%20extraction%20(OSRE)%20for%20trained%20neural%20networks:%20a%20practical%20and%20efficient%20approach&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Etchells,%20T.A.&rft.date=2006-03-01&rft.volume=17&rft.issue=2&rft.spage=374&rft.epage=384&rft.pages=374-384&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2005.863472&rft_dat=%3Cproquest_cross%3E896236488%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-c48c0f3f54a4d891222b969721c075edbf8e44083bfa290482a6d5e5e4bf4ffb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912127339&rft_id=info:pmid/16566465&rft_ieee_id=1603623&rfr_iscdi=true |