Loading…

Orthogonal search-based rule extraction (OSRE) for trained neural networks: a practical and efficient approach

There is much interest in rule extraction from neural networks and a plethora of different methods have been proposed for this purpose. We discuss the merits of pedagogical and decompositional approaches to rule extraction from trained neural networks, and show that some currently used methods for b...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2006-03, Vol.17 (2), p.374-384
Main Authors: Etchells, T.A., Lisboa, P.J.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c435t-c48c0f3f54a4d891222b969721c075edbf8e44083bfa290482a6d5e5e4bf4ffb3
cites cdi_FETCH-LOGICAL-c435t-c48c0f3f54a4d891222b969721c075edbf8e44083bfa290482a6d5e5e4bf4ffb3
container_end_page 384
container_issue 2
container_start_page 374
container_title IEEE transaction on neural networks and learning systems
container_volume 17
creator Etchells, T.A.
Lisboa, P.J.G.
description There is much interest in rule extraction from neural networks and a plethora of different methods have been proposed for this purpose. We discuss the merits of pedagogical and decompositional approaches to rule extraction from trained neural networks, and show that some currently used methods for binary data comply with a theoretical formalism for extraction of Boolean rules from continuously valued logic. This formalism is extended into a generic methodology for rule extraction from smooth decision surfaces fitted to discrete or quantized continuous variables independently of the analytical structure of the underlying model, and in a manner that is efficient even for high input dimensions. This methodology is then tested with Monks' data, for which exact rules are obtained and to Wisconsin's breast cancer data, where a small number of high-order rules are identified whose discriminatory performance can be directly visualized.
doi_str_mv 10.1109/TNN.2005.863472
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67798360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1603623</ieee_id><sourcerecordid>896236488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-c48c0f3f54a4d891222b969721c075edbf8e44083bfa290482a6d5e5e4bf4ffb3</originalsourceid><addsrcrecordid>eNqFkc9rFDEUxwex2Fo9exAkCP46zPbl5yTepLQqlC5oPQ-ZzIs7dTbZJjNo_3uz3YWKB70k4fF53yTvU1XPKCwoBXNydXm5YAByoRUXDXtQHVEjaA1g-MNyBiFrw1hzWD3O-RqACgnqUXVIlVRKKHlUhWWaVvF7DHYkGW1yq7qzGXuS5hEJ_pqSddMQA3m7_Prl7B3xMZFSG0JBAs6ptAWcfsb0I78nlmzucFeqNvQEvR_cgGEidrNJ0brVk-rA2zHj0_1-XH07P7s6_VRfLD9-Pv1wUTvB5VRW7cBzL4UVvTaUMdYZZRpGHTQS-85rFAI077xlBoRmVvUSJYrOC-87fly92eWWa29mzFO7HrLDcbQB45xbbRTjSmhdyNf_JFXTGM0V_BdkGgxwKQr48i_wOs6pDDi35SeUNZybAp3sIJdizgl9u0nD2qbblkK7VdsWte1WbbtTWzpe7GPnbo39Pb93WYBXe8DmYsAnG9yQ77lGFf9i-77nO25AxD9igJeZ8N8MXbPH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912127339</pqid></control><display><type>article</type><title>Orthogonal search-based rule extraction (OSRE) for trained neural networks: a practical and efficient approach</title><source>IEEE Xplore (Online service)</source><creator>Etchells, T.A. ; Lisboa, P.J.G.</creator><creatorcontrib>Etchells, T.A. ; Lisboa, P.J.G.</creatorcontrib><description>There is much interest in rule extraction from neural networks and a plethora of different methods have been proposed for this purpose. We discuss the merits of pedagogical and decompositional approaches to rule extraction from trained neural networks, and show that some currently used methods for binary data comply with a theoretical formalism for extraction of Boolean rules from continuously valued logic. This formalism is extended into a generic methodology for rule extraction from smooth decision surfaces fitted to discrete or quantized continuous variables independently of the analytical structure of the underlying model, and in a manner that is efficient even for high input dimensions. This methodology is then tested with Monks' data, for which exact rules are obtained and to Wisconsin's breast cancer data, where a small number of high-order rules are identified whose discriminatory performance can be directly visualized.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2005.863472</identifier><identifier>PMID: 16566465</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Boolean algebra ; Boolean functions ; Breast cancer ; Computer science; control theory; systems ; Computer Simulation ; Connectionism. Neural networks ; Data mining ; Data visualization ; Decision analysis ; Decision Support Techniques ; Etching ; Exact sciences and technology ; Extraction ; Formalism ; Law ; Legal factors ; Mathematical analysis ; Mathematical models ; Methodology ; Models, Theoretical ; Neural networks ; Neural Networks (Computer) ; Numerical Analysis, Computer-Assisted ; Pattern Recognition, Automated - methods ; rule extraction ; Testing</subject><ispartof>IEEE transaction on neural networks and learning systems, 2006-03, Vol.17 (2), p.374-384</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-c48c0f3f54a4d891222b969721c075edbf8e44083bfa290482a6d5e5e4bf4ffb3</citedby><cites>FETCH-LOGICAL-c435t-c48c0f3f54a4d891222b969721c075edbf8e44083bfa290482a6d5e5e4bf4ffb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1603623$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17601444$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16566465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Etchells, T.A.</creatorcontrib><creatorcontrib>Lisboa, P.J.G.</creatorcontrib><title>Orthogonal search-based rule extraction (OSRE) for trained neural networks: a practical and efficient approach</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>There is much interest in rule extraction from neural networks and a plethora of different methods have been proposed for this purpose. We discuss the merits of pedagogical and decompositional approaches to rule extraction from trained neural networks, and show that some currently used methods for binary data comply with a theoretical formalism for extraction of Boolean rules from continuously valued logic. This formalism is extended into a generic methodology for rule extraction from smooth decision surfaces fitted to discrete or quantized continuous variables independently of the analytical structure of the underlying model, and in a manner that is efficient even for high input dimensions. This methodology is then tested with Monks' data, for which exact rules are obtained and to Wisconsin's breast cancer data, where a small number of high-order rules are identified whose discriminatory performance can be directly visualized.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Boolean algebra</subject><subject>Boolean functions</subject><subject>Breast cancer</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Connectionism. Neural networks</subject><subject>Data mining</subject><subject>Data visualization</subject><subject>Decision analysis</subject><subject>Decision Support Techniques</subject><subject>Etching</subject><subject>Exact sciences and technology</subject><subject>Extraction</subject><subject>Formalism</subject><subject>Law</subject><subject>Legal factors</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Pattern Recognition, Automated - methods</subject><subject>rule extraction</subject><subject>Testing</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkc9rFDEUxwex2Fo9exAkCP46zPbl5yTepLQqlC5oPQ-ZzIs7dTbZJjNo_3uz3YWKB70k4fF53yTvU1XPKCwoBXNydXm5YAByoRUXDXtQHVEjaA1g-MNyBiFrw1hzWD3O-RqACgnqUXVIlVRKKHlUhWWaVvF7DHYkGW1yq7qzGXuS5hEJ_pqSddMQA3m7_Prl7B3xMZFSG0JBAs6ptAWcfsb0I78nlmzucFeqNvQEvR_cgGEidrNJ0brVk-rA2zHj0_1-XH07P7s6_VRfLD9-Pv1wUTvB5VRW7cBzL4UVvTaUMdYZZRpGHTQS-85rFAI077xlBoRmVvUSJYrOC-87fly92eWWa29mzFO7HrLDcbQB45xbbRTjSmhdyNf_JFXTGM0V_BdkGgxwKQr48i_wOs6pDDi35SeUNZybAp3sIJdizgl9u0nD2qbblkK7VdsWte1WbbtTWzpe7GPnbo39Pb93WYBXe8DmYsAnG9yQ77lGFf9i-77nO25AxD9igJeZ8N8MXbPH</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Etchells, T.A.</creator><creator>Lisboa, P.J.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20060301</creationdate><title>Orthogonal search-based rule extraction (OSRE) for trained neural networks: a practical and efficient approach</title><author>Etchells, T.A. ; Lisboa, P.J.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-c48c0f3f54a4d891222b969721c075edbf8e44083bfa290482a6d5e5e4bf4ffb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Boolean algebra</topic><topic>Boolean functions</topic><topic>Breast cancer</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Connectionism. Neural networks</topic><topic>Data mining</topic><topic>Data visualization</topic><topic>Decision analysis</topic><topic>Decision Support Techniques</topic><topic>Etching</topic><topic>Exact sciences and technology</topic><topic>Extraction</topic><topic>Formalism</topic><topic>Law</topic><topic>Legal factors</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Pattern Recognition, Automated - methods</topic><topic>rule extraction</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Etchells, T.A.</creatorcontrib><creatorcontrib>Lisboa, P.J.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Etchells, T.A.</au><au>Lisboa, P.J.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonal search-based rule extraction (OSRE) for trained neural networks: a practical and efficient approach</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2006-03-01</date><risdate>2006</risdate><volume>17</volume><issue>2</issue><spage>374</spage><epage>384</epage><pages>374-384</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>There is much interest in rule extraction from neural networks and a plethora of different methods have been proposed for this purpose. We discuss the merits of pedagogical and decompositional approaches to rule extraction from trained neural networks, and show that some currently used methods for binary data comply with a theoretical formalism for extraction of Boolean rules from continuously valued logic. This formalism is extended into a generic methodology for rule extraction from smooth decision surfaces fitted to discrete or quantized continuous variables independently of the analytical structure of the underlying model, and in a manner that is efficient even for high input dimensions. This methodology is then tested with Monks' data, for which exact rules are obtained and to Wisconsin's breast cancer data, where a small number of high-order rules are identified whose discriminatory performance can be directly visualized.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>16566465</pmid><doi>10.1109/TNN.2005.863472</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2006-03, Vol.17 (2), p.374-384
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_proquest_miscellaneous_67798360
source IEEE Xplore (Online service)
subjects Algorithms
Applied sciences
Artificial Intelligence
Boolean algebra
Boolean functions
Breast cancer
Computer science
control theory
systems
Computer Simulation
Connectionism. Neural networks
Data mining
Data visualization
Decision analysis
Decision Support Techniques
Etching
Exact sciences and technology
Extraction
Formalism
Law
Legal factors
Mathematical analysis
Mathematical models
Methodology
Models, Theoretical
Neural networks
Neural Networks (Computer)
Numerical Analysis, Computer-Assisted
Pattern Recognition, Automated - methods
rule extraction
Testing
title Orthogonal search-based rule extraction (OSRE) for trained neural networks: a practical and efficient approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A57%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonal%20search-based%20rule%20extraction%20(OSRE)%20for%20trained%20neural%20networks:%20a%20practical%20and%20efficient%20approach&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Etchells,%20T.A.&rft.date=2006-03-01&rft.volume=17&rft.issue=2&rft.spage=374&rft.epage=384&rft.pages=374-384&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2005.863472&rft_dat=%3Cproquest_cross%3E896236488%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-c48c0f3f54a4d891222b969721c075edbf8e44083bfa290482a6d5e5e4bf4ffb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912127339&rft_id=info:pmid/16566465&rft_ieee_id=1603623&rfr_iscdi=true