Loading…
Shapeme histogram projection and matching for partial object recognition
Histograms of shape signature or prototypical shapes, called shapemes, have been used effectively in previous work for 2D/3D shape matching and recognition. We extend the idea of shapeme histogram to recognize partially observed query objects from a database of complete model objects. We propose rep...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2006-04, Vol.28 (4), p.568-577 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c431t-13927fd86a7fb7aba03aa9cd06692febac332b5d56f17f5150b364c7d9d75cf93 |
---|---|
cites | cdi_FETCH-LOGICAL-c431t-13927fd86a7fb7aba03aa9cd06692febac332b5d56f17f5150b364c7d9d75cf93 |
container_end_page | 577 |
container_issue | 4 |
container_start_page | 568 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 28 |
creator | Ying Shan Sawhney, H.S. Matei, B. Kumar, R. |
description | Histograms of shape signature or prototypical shapes, called shapemes, have been used effectively in previous work for 2D/3D shape matching and recognition. We extend the idea of shapeme histogram to recognize partially observed query objects from a database of complete model objects. We propose representing each model object as a collection of shapeme histograms and match the query histogram to this representation in two steps: 1) compute a constrained projection of the query histogram onto the subspace spanned by all the shapeme histograms of the model and 2) compute a match measure between the query histogram and the projection. The first step is formulated as a constrained optimization problem that is solved by a sampling algorithm. The second step is formulated under a Bayesian framework, where an implicit feature selection process is conducted to improve the discrimination capability of shapeme histograms. Results of matching partially viewed range objects with a 243 model database demonstrate better performance than the original shapeme histogram matching algorithm and other approaches. |
doi_str_mv | 10.1109/TPAMI.2006.83 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_67798937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1597114</ieee_id><sourcerecordid>2343238771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-13927fd86a7fb7aba03aa9cd06692febac332b5d56f17f5150b364c7d9d75cf93</originalsourceid><addsrcrecordid>eNqF0U1rGzEQBmBRUho36TGnQFgCbU_r6mP1dQyhbQIJCTQ9i1mtZMvsrhxpfei_rxwbDDkkpznMwzAzL0JnBM8JwfrH0-PV_e2cYizmin1AM6KZrhln-gjNMBG0VoqqY_Q55xXGpOGYfULHRHAhOBYzdPNnCWs3uGoZ8hQXCYZqneLK2SnEsYKxqwaY7DKMi8rHVK0hTQH6KrZbUiVn42IMW3uKPnros_uyryfo76-fT9c39d3D79vrq7vaNoxMNWGaSt8pAdK3ElrADEDbDguhqXctWMZoyzsuPJGeE45bJhorO91Jbr1mJ-j7bm5Z83nj8mSGkK3rexhd3GSjtCBaadIU-e1NKaQskMl3IVVYS05ogZev4Cpu0ljONUpwyRrKRUH1DtkUc07Om3UKA6R_hmCzjcy8RGa2kRnFir_YD920g-sOep9RAV_3ALKF3icYbcgHJ7mi5MWd71xwzh3aXEtSvvEfnzummg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865734256</pqid></control><display><type>article</type><title>Shapeme histogram projection and matching for partial object recognition</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ying Shan ; Sawhney, H.S. ; Matei, B. ; Kumar, R.</creator><creatorcontrib>Ying Shan ; Sawhney, H.S. ; Matei, B. ; Kumar, R.</creatorcontrib><description>Histograms of shape signature or prototypical shapes, called shapemes, have been used effectively in previous work for 2D/3D shape matching and recognition. We extend the idea of shapeme histogram to recognize partially observed query objects from a database of complete model objects. We propose representing each model object as a collection of shapeme histograms and match the query histogram to this representation in two steps: 1) compute a constrained projection of the query histogram onto the subspace spanned by all the shapeme histograms of the model and 2) compute a match measure between the query histogram and the projection. The first step is formulated as a constrained optimization problem that is solved by a sampling algorithm. The second step is formulated under a Bayesian framework, where an implicit feature selection process is conducted to improve the discrimination capability of shapeme histograms. Results of matching partially viewed range objects with a 243 model database demonstrate better performance than the original shapeme histogram matching algorithm and other approaches.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2006.83</identifier><identifier>PMID: 16566506</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Bayesian analysis ; Bayesian methods ; Computer science; control theory; systems ; Computer Simulation ; Constraint optimization ; Exact sciences and technology ; feature saliency ; Gibbs sampling ; Histograms ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Information Storage and Retrieval - methods ; Information systems. Data bases ; Layout ; Matching ; Memory organisation. Data processing ; Models, Biological ; Models, Statistical ; Object recognition ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Projection ; Prototypes ; Query processing ; Recognition ; Reproducibility of Results ; Sampling methods ; Sensitivity and Specificity ; Shape measurement ; Shapeme histogram ; Software ; Spatial databases ; spin image ; Studies ; Subspace constraints</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2006-04, Vol.28 (4), p.568-577</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-13927fd86a7fb7aba03aa9cd06692febac332b5d56f17f5150b364c7d9d75cf93</citedby><cites>FETCH-LOGICAL-c431t-13927fd86a7fb7aba03aa9cd06692febac332b5d56f17f5150b364c7d9d75cf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1597114$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17582106$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16566506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ying Shan</creatorcontrib><creatorcontrib>Sawhney, H.S.</creatorcontrib><creatorcontrib>Matei, B.</creatorcontrib><creatorcontrib>Kumar, R.</creatorcontrib><title>Shapeme histogram projection and matching for partial object recognition</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Histograms of shape signature or prototypical shapes, called shapemes, have been used effectively in previous work for 2D/3D shape matching and recognition. We extend the idea of shapeme histogram to recognize partially observed query objects from a database of complete model objects. We propose representing each model object as a collection of shapeme histograms and match the query histogram to this representation in two steps: 1) compute a constrained projection of the query histogram onto the subspace spanned by all the shapeme histograms of the model and 2) compute a match measure between the query histogram and the projection. The first step is formulated as a constrained optimization problem that is solved by a sampling algorithm. The second step is formulated under a Bayesian framework, where an implicit feature selection process is conducted to improve the discrimination capability of shapeme histograms. Results of matching partially viewed range objects with a 243 model database demonstrate better performance than the original shapeme histogram matching algorithm and other approaches.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Constraint optimization</subject><subject>Exact sciences and technology</subject><subject>feature saliency</subject><subject>Gibbs sampling</subject><subject>Histograms</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information systems. Data bases</subject><subject>Layout</subject><subject>Matching</subject><subject>Memory organisation. Data processing</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Object recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Projection</subject><subject>Prototypes</subject><subject>Query processing</subject><subject>Recognition</subject><subject>Reproducibility of Results</subject><subject>Sampling methods</subject><subject>Sensitivity and Specificity</subject><subject>Shape measurement</subject><subject>Shapeme histogram</subject><subject>Software</subject><subject>Spatial databases</subject><subject>spin image</subject><subject>Studies</subject><subject>Subspace constraints</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqF0U1rGzEQBmBRUho36TGnQFgCbU_r6mP1dQyhbQIJCTQ9i1mtZMvsrhxpfei_rxwbDDkkpznMwzAzL0JnBM8JwfrH0-PV_e2cYizmin1AM6KZrhln-gjNMBG0VoqqY_Q55xXGpOGYfULHRHAhOBYzdPNnCWs3uGoZ8hQXCYZqneLK2SnEsYKxqwaY7DKMi8rHVK0hTQH6KrZbUiVn42IMW3uKPnros_uyryfo76-fT9c39d3D79vrq7vaNoxMNWGaSt8pAdK3ElrADEDbDguhqXctWMZoyzsuPJGeE45bJhorO91Jbr1mJ-j7bm5Z83nj8mSGkK3rexhd3GSjtCBaadIU-e1NKaQskMl3IVVYS05ogZev4Cpu0ljONUpwyRrKRUH1DtkUc07Om3UKA6R_hmCzjcy8RGa2kRnFir_YD920g-sOep9RAV_3ALKF3icYbcgHJ7mi5MWd71xwzh3aXEtSvvEfnzummg</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Ying Shan</creator><creator>Sawhney, H.S.</creator><creator>Matei, B.</creator><creator>Kumar, R.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060401</creationdate><title>Shapeme histogram projection and matching for partial object recognition</title><author>Ying Shan ; Sawhney, H.S. ; Matei, B. ; Kumar, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-13927fd86a7fb7aba03aa9cd06692febac332b5d56f17f5150b364c7d9d75cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Constraint optimization</topic><topic>Exact sciences and technology</topic><topic>feature saliency</topic><topic>Gibbs sampling</topic><topic>Histograms</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information systems. Data bases</topic><topic>Layout</topic><topic>Matching</topic><topic>Memory organisation. Data processing</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Object recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Projection</topic><topic>Prototypes</topic><topic>Query processing</topic><topic>Recognition</topic><topic>Reproducibility of Results</topic><topic>Sampling methods</topic><topic>Sensitivity and Specificity</topic><topic>Shape measurement</topic><topic>Shapeme histogram</topic><topic>Software</topic><topic>Spatial databases</topic><topic>spin image</topic><topic>Studies</topic><topic>Subspace constraints</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ying Shan</creatorcontrib><creatorcontrib>Sawhney, H.S.</creatorcontrib><creatorcontrib>Matei, B.</creatorcontrib><creatorcontrib>Kumar, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ying Shan</au><au>Sawhney, H.S.</au><au>Matei, B.</au><au>Kumar, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shapeme histogram projection and matching for partial object recognition</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2006-04-01</date><risdate>2006</risdate><volume>28</volume><issue>4</issue><spage>568</spage><epage>577</epage><pages>568-577</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Histograms of shape signature or prototypical shapes, called shapemes, have been used effectively in previous work for 2D/3D shape matching and recognition. We extend the idea of shapeme histogram to recognize partially observed query objects from a database of complete model objects. We propose representing each model object as a collection of shapeme histograms and match the query histogram to this representation in two steps: 1) compute a constrained projection of the query histogram onto the subspace spanned by all the shapeme histograms of the model and 2) compute a match measure between the query histogram and the projection. The first step is formulated as a constrained optimization problem that is solved by a sampling algorithm. The second step is formulated under a Bayesian framework, where an implicit feature selection process is conducted to improve the discrimination capability of shapeme histograms. Results of matching partially viewed range objects with a 243 model database demonstrate better performance than the original shapeme histogram matching algorithm and other approaches.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>16566506</pmid><doi>10.1109/TPAMI.2006.83</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2006-04, Vol.28 (4), p.568-577 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_proquest_miscellaneous_67798937 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Applied sciences Artificial Intelligence Bayesian analysis Bayesian methods Computer science control theory systems Computer Simulation Constraint optimization Exact sciences and technology feature saliency Gibbs sampling Histograms Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods Information Storage and Retrieval - methods Information systems. Data bases Layout Matching Memory organisation. Data processing Models, Biological Models, Statistical Object recognition Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry Projection Prototypes Query processing Recognition Reproducibility of Results Sampling methods Sensitivity and Specificity Shape measurement Shapeme histogram Software Spatial databases spin image Studies Subspace constraints |
title | Shapeme histogram projection and matching for partial object recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A26%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shapeme%20histogram%20projection%20and%20matching%20for%20partial%20object%20recognition&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Ying%20Shan&rft.date=2006-04-01&rft.volume=28&rft.issue=4&rft.spage=568&rft.epage=577&rft.pages=568-577&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2006.83&rft_dat=%3Cproquest_pasca%3E2343238771%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-13927fd86a7fb7aba03aa9cd06692febac332b5d56f17f5150b364c7d9d75cf93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=865734256&rft_id=info:pmid/16566506&rft_ieee_id=1597114&rfr_iscdi=true |