Loading…

Shapeme histogram projection and matching for partial object recognition

Histograms of shape signature or prototypical shapes, called shapemes, have been used effectively in previous work for 2D/3D shape matching and recognition. We extend the idea of shapeme histogram to recognize partially observed query objects from a database of complete model objects. We propose rep...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2006-04, Vol.28 (4), p.568-577
Main Authors: Ying Shan, Sawhney, H.S., Matei, B., Kumar, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c431t-13927fd86a7fb7aba03aa9cd06692febac332b5d56f17f5150b364c7d9d75cf93
cites cdi_FETCH-LOGICAL-c431t-13927fd86a7fb7aba03aa9cd06692febac332b5d56f17f5150b364c7d9d75cf93
container_end_page 577
container_issue 4
container_start_page 568
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 28
creator Ying Shan
Sawhney, H.S.
Matei, B.
Kumar, R.
description Histograms of shape signature or prototypical shapes, called shapemes, have been used effectively in previous work for 2D/3D shape matching and recognition. We extend the idea of shapeme histogram to recognize partially observed query objects from a database of complete model objects. We propose representing each model object as a collection of shapeme histograms and match the query histogram to this representation in two steps: 1) compute a constrained projection of the query histogram onto the subspace spanned by all the shapeme histograms of the model and 2) compute a match measure between the query histogram and the projection. The first step is formulated as a constrained optimization problem that is solved by a sampling algorithm. The second step is formulated under a Bayesian framework, where an implicit feature selection process is conducted to improve the discrimination capability of shapeme histograms. Results of matching partially viewed range objects with a 243 model database demonstrate better performance than the original shapeme histogram matching algorithm and other approaches.
doi_str_mv 10.1109/TPAMI.2006.83
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_67798937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1597114</ieee_id><sourcerecordid>2343238771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-13927fd86a7fb7aba03aa9cd06692febac332b5d56f17f5150b364c7d9d75cf93</originalsourceid><addsrcrecordid>eNqF0U1rGzEQBmBRUho36TGnQFgCbU_r6mP1dQyhbQIJCTQ9i1mtZMvsrhxpfei_rxwbDDkkpznMwzAzL0JnBM8JwfrH0-PV_e2cYizmin1AM6KZrhln-gjNMBG0VoqqY_Q55xXGpOGYfULHRHAhOBYzdPNnCWs3uGoZ8hQXCYZqneLK2SnEsYKxqwaY7DKMi8rHVK0hTQH6KrZbUiVn42IMW3uKPnros_uyryfo76-fT9c39d3D79vrq7vaNoxMNWGaSt8pAdK3ElrADEDbDguhqXctWMZoyzsuPJGeE45bJhorO91Jbr1mJ-j7bm5Z83nj8mSGkK3rexhd3GSjtCBaadIU-e1NKaQskMl3IVVYS05ogZev4Cpu0ljONUpwyRrKRUH1DtkUc07Om3UKA6R_hmCzjcy8RGa2kRnFir_YD920g-sOep9RAV_3ALKF3icYbcgHJ7mi5MWd71xwzh3aXEtSvvEfnzummg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865734256</pqid></control><display><type>article</type><title>Shapeme histogram projection and matching for partial object recognition</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ying Shan ; Sawhney, H.S. ; Matei, B. ; Kumar, R.</creator><creatorcontrib>Ying Shan ; Sawhney, H.S. ; Matei, B. ; Kumar, R.</creatorcontrib><description>Histograms of shape signature or prototypical shapes, called shapemes, have been used effectively in previous work for 2D/3D shape matching and recognition. We extend the idea of shapeme histogram to recognize partially observed query objects from a database of complete model objects. We propose representing each model object as a collection of shapeme histograms and match the query histogram to this representation in two steps: 1) compute a constrained projection of the query histogram onto the subspace spanned by all the shapeme histograms of the model and 2) compute a match measure between the query histogram and the projection. The first step is formulated as a constrained optimization problem that is solved by a sampling algorithm. The second step is formulated under a Bayesian framework, where an implicit feature selection process is conducted to improve the discrimination capability of shapeme histograms. Results of matching partially viewed range objects with a 243 model database demonstrate better performance than the original shapeme histogram matching algorithm and other approaches.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2006.83</identifier><identifier>PMID: 16566506</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Bayesian analysis ; Bayesian methods ; Computer science; control theory; systems ; Computer Simulation ; Constraint optimization ; Exact sciences and technology ; feature saliency ; Gibbs sampling ; Histograms ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Information Storage and Retrieval - methods ; Information systems. Data bases ; Layout ; Matching ; Memory organisation. Data processing ; Models, Biological ; Models, Statistical ; Object recognition ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Projection ; Prototypes ; Query processing ; Recognition ; Reproducibility of Results ; Sampling methods ; Sensitivity and Specificity ; Shape measurement ; Shapeme histogram ; Software ; Spatial databases ; spin image ; Studies ; Subspace constraints</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2006-04, Vol.28 (4), p.568-577</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-13927fd86a7fb7aba03aa9cd06692febac332b5d56f17f5150b364c7d9d75cf93</citedby><cites>FETCH-LOGICAL-c431t-13927fd86a7fb7aba03aa9cd06692febac332b5d56f17f5150b364c7d9d75cf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1597114$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17582106$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16566506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ying Shan</creatorcontrib><creatorcontrib>Sawhney, H.S.</creatorcontrib><creatorcontrib>Matei, B.</creatorcontrib><creatorcontrib>Kumar, R.</creatorcontrib><title>Shapeme histogram projection and matching for partial object recognition</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Histograms of shape signature or prototypical shapes, called shapemes, have been used effectively in previous work for 2D/3D shape matching and recognition. We extend the idea of shapeme histogram to recognize partially observed query objects from a database of complete model objects. We propose representing each model object as a collection of shapeme histograms and match the query histogram to this representation in two steps: 1) compute a constrained projection of the query histogram onto the subspace spanned by all the shapeme histograms of the model and 2) compute a match measure between the query histogram and the projection. The first step is formulated as a constrained optimization problem that is solved by a sampling algorithm. The second step is formulated under a Bayesian framework, where an implicit feature selection process is conducted to improve the discrimination capability of shapeme histograms. Results of matching partially viewed range objects with a 243 model database demonstrate better performance than the original shapeme histogram matching algorithm and other approaches.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Constraint optimization</subject><subject>Exact sciences and technology</subject><subject>feature saliency</subject><subject>Gibbs sampling</subject><subject>Histograms</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information systems. Data bases</subject><subject>Layout</subject><subject>Matching</subject><subject>Memory organisation. Data processing</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Object recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Projection</subject><subject>Prototypes</subject><subject>Query processing</subject><subject>Recognition</subject><subject>Reproducibility of Results</subject><subject>Sampling methods</subject><subject>Sensitivity and Specificity</subject><subject>Shape measurement</subject><subject>Shapeme histogram</subject><subject>Software</subject><subject>Spatial databases</subject><subject>spin image</subject><subject>Studies</subject><subject>Subspace constraints</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqF0U1rGzEQBmBRUho36TGnQFgCbU_r6mP1dQyhbQIJCTQ9i1mtZMvsrhxpfei_rxwbDDkkpznMwzAzL0JnBM8JwfrH0-PV_e2cYizmin1AM6KZrhln-gjNMBG0VoqqY_Q55xXGpOGYfULHRHAhOBYzdPNnCWs3uGoZ8hQXCYZqneLK2SnEsYKxqwaY7DKMi8rHVK0hTQH6KrZbUiVn42IMW3uKPnros_uyryfo76-fT9c39d3D79vrq7vaNoxMNWGaSt8pAdK3ElrADEDbDguhqXctWMZoyzsuPJGeE45bJhorO91Jbr1mJ-j7bm5Z83nj8mSGkK3rexhd3GSjtCBaadIU-e1NKaQskMl3IVVYS05ogZev4Cpu0ljONUpwyRrKRUH1DtkUc07Om3UKA6R_hmCzjcy8RGa2kRnFir_YD920g-sOep9RAV_3ALKF3icYbcgHJ7mi5MWd71xwzh3aXEtSvvEfnzummg</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Ying Shan</creator><creator>Sawhney, H.S.</creator><creator>Matei, B.</creator><creator>Kumar, R.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060401</creationdate><title>Shapeme histogram projection and matching for partial object recognition</title><author>Ying Shan ; Sawhney, H.S. ; Matei, B. ; Kumar, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-13927fd86a7fb7aba03aa9cd06692febac332b5d56f17f5150b364c7d9d75cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Constraint optimization</topic><topic>Exact sciences and technology</topic><topic>feature saliency</topic><topic>Gibbs sampling</topic><topic>Histograms</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information systems. Data bases</topic><topic>Layout</topic><topic>Matching</topic><topic>Memory organisation. Data processing</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Object recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Projection</topic><topic>Prototypes</topic><topic>Query processing</topic><topic>Recognition</topic><topic>Reproducibility of Results</topic><topic>Sampling methods</topic><topic>Sensitivity and Specificity</topic><topic>Shape measurement</topic><topic>Shapeme histogram</topic><topic>Software</topic><topic>Spatial databases</topic><topic>spin image</topic><topic>Studies</topic><topic>Subspace constraints</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ying Shan</creatorcontrib><creatorcontrib>Sawhney, H.S.</creatorcontrib><creatorcontrib>Matei, B.</creatorcontrib><creatorcontrib>Kumar, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ying Shan</au><au>Sawhney, H.S.</au><au>Matei, B.</au><au>Kumar, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shapeme histogram projection and matching for partial object recognition</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2006-04-01</date><risdate>2006</risdate><volume>28</volume><issue>4</issue><spage>568</spage><epage>577</epage><pages>568-577</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Histograms of shape signature or prototypical shapes, called shapemes, have been used effectively in previous work for 2D/3D shape matching and recognition. We extend the idea of shapeme histogram to recognize partially observed query objects from a database of complete model objects. We propose representing each model object as a collection of shapeme histograms and match the query histogram to this representation in two steps: 1) compute a constrained projection of the query histogram onto the subspace spanned by all the shapeme histograms of the model and 2) compute a match measure between the query histogram and the projection. The first step is formulated as a constrained optimization problem that is solved by a sampling algorithm. The second step is formulated under a Bayesian framework, where an implicit feature selection process is conducted to improve the discrimination capability of shapeme histograms. Results of matching partially viewed range objects with a 243 model database demonstrate better performance than the original shapeme histogram matching algorithm and other approaches.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>16566506</pmid><doi>10.1109/TPAMI.2006.83</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2006-04, Vol.28 (4), p.568-577
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_miscellaneous_67798937
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Applied sciences
Artificial Intelligence
Bayesian analysis
Bayesian methods
Computer science
control theory
systems
Computer Simulation
Constraint optimization
Exact sciences and technology
feature saliency
Gibbs sampling
Histograms
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Information Storage and Retrieval - methods
Information systems. Data bases
Layout
Matching
Memory organisation. Data processing
Models, Biological
Models, Statistical
Object recognition
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Projection
Prototypes
Query processing
Recognition
Reproducibility of Results
Sampling methods
Sensitivity and Specificity
Shape measurement
Shapeme histogram
Software
Spatial databases
spin image
Studies
Subspace constraints
title Shapeme histogram projection and matching for partial object recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A26%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shapeme%20histogram%20projection%20and%20matching%20for%20partial%20object%20recognition&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Ying%20Shan&rft.date=2006-04-01&rft.volume=28&rft.issue=4&rft.spage=568&rft.epage=577&rft.pages=568-577&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2006.83&rft_dat=%3Cproquest_pasca%3E2343238771%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-13927fd86a7fb7aba03aa9cd06692febac332b5d56f17f5150b364c7d9d75cf93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=865734256&rft_id=info:pmid/16566506&rft_ieee_id=1597114&rfr_iscdi=true