Loading…

Up-Regulation of Heme Biosynthesis during Differentiation of Neuro2a Cells

Heme is an iron-containing tetrapyrrole molecule that functions as a prosthetic group for proteins such as mitochondrial respiratory enzymes. Several studies have suggested that heme has essential functions in the construction and maintenance of the nervous system. In this study, the contents of thr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biochemistry (Tokyo) 2006-03, Vol.139 (3), p.373-381
Main Authors: Shinjyo, Noriko, Kita, Kiyoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heme is an iron-containing tetrapyrrole molecule that functions as a prosthetic group for proteins such as mitochondrial respiratory enzymes. Several studies have suggested that heme has essential functions in the construction and maintenance of the nervous system. In this study, the contents of three biologically important forms of heme (types a, b, and c) and the expression of heme biosynthetic enzymes were examined in differentiating Neuro2a cells. During neuronal differentiation, there were increases in the cellular heme levels and increases in the mRNA levels for the rate-limiting enzymes of heme biosynthesis, such as aminolevulinic acid synthase (ALAS; EC 2.3.1.37) and coproporphyrinogen oxidase (EC 1.3.3.3). With respect to heme contents, heme b increased in the late phase of differentiation, but no apparent increase in heme a or b was observed in the early phase. In contrast, heme c (cytochrome c) markedly increased during the early phase of differentiation. This change preceded the increase in heme b and the up-regulation of the mRNA levels for heme biosynthetic enzymes. This study suggests the up-regulation of heme biosynthesis and differential regulation of the heme a, b, and c levels during neuronal differentiation.
ISSN:0021-924X
1756-2651
DOI:10.1093/jb/mvj040