Loading…

The neural basis of temporal auditory discrimination

When two identical stimuli, such as a pair of clicks, are presented with a sufficiently long time-interval between them they are readily perceived as two separate events. However, as they are presented progressively closer together, there comes a point when the two separate stimuli are perceived as...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2006-04, Vol.30 (2), p.512-520
Main Authors: Pastor, M.A., Macaluso, E., Day, B.L., Frackowiak, R.S.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When two identical stimuli, such as a pair of clicks, are presented with a sufficiently long time-interval between them they are readily perceived as two separate events. However, as they are presented progressively closer together, there comes a point when the two separate stimuli are perceived as one. This phenomenon applies not only to hearing but also to other sensory modalities. Damage to the basal ganglia disturbs this type of temporal discrimination irrespective of sensory modality, suggesting a multimodal process is involved. Our aim was to study the neural substrate of auditory temporal discrimination in healthy subjects and to compare it with structures previously associated with analogous tactile temporal discrimination. During fMRI scanning, paired-clicks separated by variable inter-stimulus intervals (1–50 ms) were delivered binaurally, with different intensities delivered to each ear, yielding a lateralised auditory percept. Subjects were required (a) to report whether they heard one or two stimuli (TD: temporal discrimination); or (b) to report whether the stimuli were located on the right or left side of the head mid-line (SD: spatial discrimination); or (c) simply to detect the presence of an auditory stimulus (control task). Our results showed that both types of auditory discrimination (TD and SD) compared to simple detection activated a network of brain areas including regions of prefrontal cortex and basal ganglia. Critically, two clusters in pre-SMA and the anterior cingulate cortex were specifically activated by TD. Furthermore, these clusters overlap with regions activated for similar judgments in the tactile modality suggesting that they fulfill a multimodal function in the temporal processing of sensory events.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2005.09.053