Loading…

beta-Agonist stimulation produces changes in cardiac AMPK and coronary lumen LPL only during increased workload

Given the importance of lipoprotein lipase (LPL) in cardiac and vascular pathology, the objective of the present study was to investigate whether the beta-agonist isoproterenol (Iso) influences cardiac LPL. Incubation of quiescent cardiomyocytes with Iso for 60 min had no effect on basal, intracellu...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology: endocrinology and metabolism 2005-06, Vol.288 (6), p.E1120-E1127
Main Authors: An, Ding, Kewalramani, Girsh, Qi, Dake, Pulinilkunnil, Thomas, Ghosh, Sanjoy, Abrahani, Ashraf, Wambolt, Rich, Allard, Michael, Innis, Sheila M, Rodrigues, Brian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given the importance of lipoprotein lipase (LPL) in cardiac and vascular pathology, the objective of the present study was to investigate whether the beta-agonist isoproterenol (Iso) influences cardiac LPL. Incubation of quiescent cardiomyocytes with Iso for 60 min had no effect on basal, intracellular, or heparin-releasable (HR)-LPL activity. Similarly, Iso did not change HR-LPL in Langendorff isolated hearts that do not beat against an afterload. In the intact animal, LPL activity at the vascular lumen increased significantly in the Iso-treated group, together with a substantial increase in rate-pressure product. This LPL increase was likely via mechanisms regulated by activation of AMP-activated protein kinase (AMPK) and inactivation of acetyl-CoA carboxylase (ACC280). In glucose-perfused hearts, simply switching from Langendorff to the isolated working heart (that beats against an afterload) induced increases in AMPK and ACC280 phosphorylation and enhanced HR-LPL activity. Provision of insulin and albumin-bound palmitic acid to the working heart was able to reverse these effects. In these hearts, introduction of Iso to the buffer perfusate duplicated the effects seen when this beta-agonist was given in vivo. Our data suggest that Iso can influence HR-LPL only during conditions of increased workload, mechanical performance and excessive energy expenditure, and likely in an AMPK-dependent manner.
ISSN:0193-1849
1522-1555
DOI:10.1152/ajpendo.00588.2004