Loading…

Adhesion and proliferation of fibroblasts on RF plasma-deposited nanostructured fluorocarbon coatings: Evidence of FAK activation

We used combined plasma‐deposition process to deposit smooth and nanostructured fluorocarbon coatings on polyethylenethereftalate (PET) substrates, to obtain surfaces with identical chemical composition and different roughness, and investigate the effect of surface nanostructures on adhesion and pro...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cellular physiology 2006-06, Vol.207 (3), p.636-643
Main Authors: Rosso, Francesco, Marino, Gerardo, Muscariello, Livio, Cafiero, Gennaro, Favia, Pietro, D'Aloia, Erica, d'Agostino, Riccardo, Barbarisi, Alfonso
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We used combined plasma‐deposition process to deposit smooth and nanostructured fluorocarbon coatings on polyethylenethereftalate (PET) substrates, to obtain surfaces with identical chemical composition and different roughness, and investigate the effect of surface nanostructures on adhesion and proliferation of 3T3 Swiss Albino Mouse fibroblasts. Untreated PET and polystyrene (PS) were used as controls for cell culture. We have found that the statistically significant increase of cell proliferation rate and FAK (a nonreceptor tyrosine kinase) activation detected on ROUGH fluorocarbon surfaces is due to the presence of nanostructures. Changes in cytoskeletal organization and phospho FAK (tyr 397) localization were evident after 60 min on cells adhering to ROUGH surfaces. This change was characterized by the formation of actin stress fibers along lamellar membrane protrusion instead of usual focal contacts. Also the morphology of the adhering fibroblasts (60 min) adhering on ROUGH surfaces was found quite different compared to cells adhering on smooth ones. J. Cell. Physiol. © 2006 Wiley‐Liss, Inc.
ISSN:0021-9541
1097-4652
DOI:10.1002/jcp.20595