Loading…

Strong Attraction among the Fully Hydrophilic {Mo72Fe30} Macroanions

We report the study on the unique driving forces of the self-assembly of fully hydrophilic, soluble {Mo72Fe30} macroanions into single-layer, vesicle-like “blackberry” structures in water and mixed solvents. The hydrophobic interaction that is responsible for the vesicle formation of amphiphilic sur...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2005-05, Vol.127 (19), p.6942-6943
Main Authors: Liu, Guang, Liu, Tianbo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report the study on the unique driving forces of the self-assembly of fully hydrophilic, soluble {Mo72Fe30} macroanions into single-layer, vesicle-like “blackberry” structures in water and mixed solvents. The hydrophobic interaction that is responsible for the vesicle formation of amphiphilic surfactants does not contribute to the current blackberry formation because of the absence of hydrophobic moiety. The hydrogen bond, van der Waals force, and chemical interaction only play minor roles. Laser light scattering and conductance measurements on a series of {Mo72Fe30}/ethanol/H2O solutions show that a certain amount of negative charges are necessary for the self-assembly, clearly indicating the existence of long-range attraction between macroanions, presumably due to the small counterions in between. The experimental results suggest that the charges on macroanions play a dual effect:  short-range electrostatic repulsion and long-range “like-charge attraction”, which is the major source of attractive force between hydrophilic macroanions, while van der Waals force, hydrogen bonds, and temporary inter-{Mo72Fe30} Fe−O−Fe chemical linking may also have minor contributions.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja0510966