Loading…

Correlation between the sizes of Mauthner neurons and the preference of goldfish to turn to the right or left

Three-dimensional computer reconstruction working from serial histological sections was used to study the morphology of the right and left Mauthner neurons (MN) in goldfish fry showing marked preferences to turn stably to the right or left in a narrow water channel or showing no asymmetry in their c...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience and behavioral physiology 2006-05, Vol.36 (4), p.419-422
Main Authors: Mikhailova, G Z, Pavlik, V D, Tiras, N R, Moshkov, D A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Three-dimensional computer reconstruction working from serial histological sections was used to study the morphology of the right and left Mauthner neurons (MN) in goldfish fry showing marked preferences to turn stably to the right or left in a narrow water channel or showing no asymmetry in their choice of side during turns. Visually, fish with left-sided motor asymmetry had larger MN on the right side, while fish with right-sided motor asymmetry had larger MN on the left side. Fish with symmetrical turns to the right and left showed no differences in MN size. Quantitative assessment of the MN of fish with preferences for turns to one side or the other revealed significant differences in the sizes of the somatic part, the axon hillock, and the axons of neurons located on the contralateral side of the medulla oblongata. Analysis of the statistical relationships between the functional (motor) asymmetry of fish and the morphological asymmetry of the somatic parts of MN in the same fish revealed a stable correlation (0.69) between these measures. Given that MN initiate unilateral turns of the body in free movement, the data obtained here lead to the conclusion that the larger neuron is more frequently activated in natural conditions as compared with the smaller, contralateral, neuron.
ISSN:0097-0549
1573-899X
DOI:10.1007/s11055-006-0034-8