Loading…

Symmetry-based recoupling of 17O– 1H spin pairs in magic-angle spinning NMR

We have performed magic-angle-spinning solid-state NMR experiments in which protons are recoupled to oxygen-17 nuclei by applying a symmetry-based recoupling sequence at the proton Larmor frequency. Two-dimensional quadrupole-dipole correlation spectra are produced, in which the second-order quadrup...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetic resonance (1997) 2006-03, Vol.179 (1), p.38-48
Main Authors: van Beek, Jacco D., Dupree, Ray, Levitt, Malcolm H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have performed magic-angle-spinning solid-state NMR experiments in which protons are recoupled to oxygen-17 nuclei by applying a symmetry-based recoupling sequence at the proton Larmor frequency. Two-dimensional quadrupole-dipole correlation spectra are produced, in which the second-order quadrupolar shift of the oxygen-17 central transition is correlated with the recoupled heteronuclear dipole–dipole interaction. These spectra are sensitive to the relative orientation of the electric field gradient at the site of the oxygen-17 nucleus and the O–H internuclear vector. We also demonstrate experiments in which polarization is transferred from protons to oxygen-17, and show that oxygen-17 signals may be selected according to the protonation state of the oxygen site. We discuss the small observed value of the heteronuclear dipolar splitting in the central-transition oxygen-17 spectra.
ISSN:1090-7807
1096-0856
DOI:10.1016/j.jmr.2005.11.003