Loading…
A web-based tool for principal component and significance analysis of microarray data
We have developed a program for microarray data analysis, which features the false discovery rate for testing statistical significance and the principal component analysis using the singular value decomposition method for detecting the global trends of gene-expression patterns. Additional features i...
Saved in:
Published in: | Bioinformatics 2005-05, Vol.21 (10), p.2548-2549 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have developed a program for microarray data analysis, which features the false discovery rate for testing statistical significance and the principal component analysis using the singular value decomposition method for detecting the global trends of gene-expression patterns. Additional features include analysis of variance with multiple methods for error variance adjustment, correction of cross-channel correlation for two-color microarrays, identification of genes specific to each cluster of tissue samples, biplot of tissues and corresponding tissue-specific genes, clustering of genes that are correlated with each principal component (PC), three-dimensional graphics based on virtual reality modeling language and sharing of PC between different experiments. The software also supports parameter adjustment, gene search and graphical output of results. The software is implemented as a web tool and thus the speed of analysis does not depend on the power of a client computer. Availability: The tool can be used on-line or downloaded at http://lgsun.grc.nia.nih.gov/ANOVA/ Contact: kom@mail.nih.gov |
---|---|
ISSN: | 1367-4803 1460-2059 1367-4811 |
DOI: | 10.1093/bioinformatics/bti343 |