Loading…

Expression of Xenopus XlSALL4 during limb development and regeneration

The multi‐C2H2 zinc‐finger domain containing transcriptional regulators of the spalt (SAL) family plays important developmental regulatory roles. In a competitive subtractive hybridization screen of genes expressed in Xenopus laevis hindlimb regeneration blastemas, we identified a SAL family member...

Full description

Saved in:
Bibliographic Details
Published in:Developmental dynamics 2005-06, Vol.233 (2), p.356-367
Main Authors: Neff, Anton W., King, Michael W., Harty, Mark W., Nguyen, Trent, Calley, John, Smith, Rosamund C., Mescher, Anthony L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The multi‐C2H2 zinc‐finger domain containing transcriptional regulators of the spalt (SAL) family plays important developmental regulatory roles. In a competitive subtractive hybridization screen of genes expressed in Xenopus laevis hindlimb regeneration blastemas, we identified a SAL family member that, by phylogenetic analysis, falls in the same clade as human SALL4 and have designated it as XlSALL4. Mutations of human SALL4 have been linked to Okihiro syndrome, which includes preaxial (anterior) limb defects. The expression pattern of XlSALL4 transcripts during normal forelimb and hindlimb development and during hindlimb regeneration at the regeneration‐competent and regeneration‐incompetent stages is temporally and regionally dynamic. We show for the first time that a SAL family member (XlSALL4) is expressed at the right place and time to play a role regulating both digit identity along the anterior/posterior axis and epimorphic limb regeneration. Developmental Dynamics 233:356–367, 2005. © 2005 Wiley‐Liss, Inc.
ISSN:1058-8388
1097-0177
DOI:10.1002/dvdy.20363