Loading…

Efficiency of New Fungal Cellulase Systems in Boosting Enzymatic Degradation of Barley Straw Lignocellulose

This study examined the cellulytic effects on steam‐pretreated barley straw of cellulose‐degrading enzyme systems from the five thermophilic fungi Chaetomium thermophilum, Thielavia terrestris, Thermoascus aurantiacus, Corynascus thermophilus, and Myceliophthora thermophila and from the mesophile Pe...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology progress 2006-03, Vol.22 (2), p.493-498
Main Authors: Rosgaard, L, Pedersen, S, Cherry, J.R, Harris, P, Meyer, A.S
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4471-621a80257e7d61988df276a0db592830defe31c8fc60c29fef62efb3750a0b383
cites
container_end_page 498
container_issue 2
container_start_page 493
container_title Biotechnology progress
container_volume 22
creator Rosgaard, L
Pedersen, S
Cherry, J.R
Harris, P
Meyer, A.S
description This study examined the cellulytic effects on steam‐pretreated barley straw of cellulose‐degrading enzyme systems from the five thermophilic fungi Chaetomium thermophilum, Thielavia terrestris, Thermoascus aurantiacus, Corynascus thermophilus, and Myceliophthora thermophila and from the mesophile Penicillum funiculosum. The catalytic glucose release was compared after treatments with each of the crude enzyme systems when added to a benchmark blend of a commercial cellulase product, Celluclast, derived from Trichoderma reesei and a β‐glucosidase, Novozym 188, from Aspergillus niger. The enzymatic treatments were evaluated in an experimental design template comprising a span of pH (3.5–6.5) and temperature (35–65 °C) reaction combinations. The addition to Celluclast + Novozym 188 of low dosages of the crude enzyme systems, corresponding to 10 wt % of the total enzyme protein load, increased the catalytic glucose yields significantly as compared to those obtained with the benchmark Celluclast + Novozyme 188 blend. A comparison of glucose yields obtained on steam‐pretreated barley straw and microcrystalline cellulose, Avicel, indicated that the yield improvements were mainly due to the presence of highly active endoglucanase activity/activities in the experimental enzyme preparations. The data demonstrated the feasibility of boosting the widely studied T. reeseicellulase enzyme system with additional enzymatic activity to achieve faster lignocellulose degradation. We conclude that this supplementation strategy appears feasible as a first step in identifying truly promising fungal enzyme sources for fast development of improved, commercially viable, enzyme preparations for lignocellulose degradation.
doi_str_mv 10.1021/bp050361o
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67839558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67839558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4471-621a80257e7d61988df276a0db592830defe31c8fc60c29fef62efb3750a0b383</originalsourceid><addsrcrecordid>eNqF0U1vEzEQBuAVAtG0cOAPgC8gcVgY2_HHHpuQFpQooKQVR8vrtVemm3WwE6Xh1-M0UXtCnDyHZ17bM0XxBsMnDAR_rtfAgHIcnhUDzAiUHCh9XgykYLwUFZVnxXlKvwBAAicvizPMWVUxLgbF3cQ5b7ztzR4Fh-Z2h662fas7NLZdt-10smi5Txu7Ssj3aBRC2vi-RZP-z36lN96gL7aNusll6A8JIx07u0fLTdQ7NPNtH8xDUEj2VfHC6S7Z16fzori9mtyMv5az79ffxpez0gyHApecYC2BMGFFw3ElZeOI4BqamlVEUmissxQb6QwHQypnHSfW1VQw0FBTSS-KD8fcdQy_tzZt1Mqnwyt0b8M2KS4krRj7PyRAhpJJluHHIzQxpBStU-voVzruFQZ1WIF6XEG2b0-h23plmyd5mnkG709AJ6M7F3VvfHpyMkNBDw6ObufzRP99oxrd_Fg8lLmlPLb4vLH7xxYd7_Kn84DUz_m1WkynbL4cT9Ui-3dH73RQuo35GbdLApgCBskrSulflXe14g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20248585</pqid></control><display><type>article</type><title>Efficiency of New Fungal Cellulase Systems in Boosting Enzymatic Degradation of Barley Straw Lignocellulose</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Rosgaard, L ; Pedersen, S ; Cherry, J.R ; Harris, P ; Meyer, A.S</creator><creatorcontrib>Rosgaard, L ; Pedersen, S ; Cherry, J.R ; Harris, P ; Meyer, A.S</creatorcontrib><description>This study examined the cellulytic effects on steam‐pretreated barley straw of cellulose‐degrading enzyme systems from the five thermophilic fungi Chaetomium thermophilum, Thielavia terrestris, Thermoascus aurantiacus, Corynascus thermophilus, and Myceliophthora thermophila and from the mesophile Penicillum funiculosum. The catalytic glucose release was compared after treatments with each of the crude enzyme systems when added to a benchmark blend of a commercial cellulase product, Celluclast, derived from Trichoderma reesei and a β‐glucosidase, Novozym 188, from Aspergillus niger. The enzymatic treatments were evaluated in an experimental design template comprising a span of pH (3.5–6.5) and temperature (35–65 °C) reaction combinations. The addition to Celluclast + Novozym 188 of low dosages of the crude enzyme systems, corresponding to 10 wt % of the total enzyme protein load, increased the catalytic glucose yields significantly as compared to those obtained with the benchmark Celluclast + Novozyme 188 blend. A comparison of glucose yields obtained on steam‐pretreated barley straw and microcrystalline cellulose, Avicel, indicated that the yield improvements were mainly due to the presence of highly active endoglucanase activity/activities in the experimental enzyme preparations. The data demonstrated the feasibility of boosting the widely studied T. reeseicellulase enzyme system with additional enzymatic activity to achieve faster lignocellulose degradation. We conclude that this supplementation strategy appears feasible as a first step in identifying truly promising fungal enzyme sources for fast development of improved, commercially viable, enzyme preparations for lignocellulose degradation.</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1021/bp050361o</identifier><identifier>PMID: 16599567</identifier><identifier>CODEN: BIPRET</identifier><language>eng</language><publisher>USA: American Chemical Society</publisher><subject>Ascomycota - enzymology ; Aspergillus niger ; barley straw ; Biological and medical sciences ; Biotechnology ; Cellobiose - metabolism ; Cellulase - metabolism ; cellulases ; cellulolytic microorganisms ; Cellulose - metabolism ; Chaetomium ; Chromatography, High Pressure Liquid ; Chromatography, Ion Exchange ; Culture Media ; enzymatic hydrolysis ; enzymatic treatment ; Fermentation ; Fundamental and applied biological sciences. Psychology ; fungi ; glucose ; Glucose - metabolism ; Hordeum - enzymology ; Hordeum vulgare ; Hydrogen-Ion Concentration ; Hydrolysis ; Hypocrea jecorina ; Lignin - metabolism ; lignocellulose ; Multienzyme Complexes - metabolism ; Myceliophthora thermophila ; Plant Stems - enzymology ; pretreatment ; steaming ; Substrate Specificity ; Temperature ; Thermoascus aurantiacus ; thermophilic fungi</subject><ispartof>Biotechnology progress, 2006-03, Vol.22 (2), p.493-498</ispartof><rights>Copyright © 2006 American Institute of Chemical Engineers (AIChE)</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4471-621a80257e7d61988df276a0db592830defe31c8fc60c29fef62efb3750a0b383</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18659737$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16599567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosgaard, L</creatorcontrib><creatorcontrib>Pedersen, S</creatorcontrib><creatorcontrib>Cherry, J.R</creatorcontrib><creatorcontrib>Harris, P</creatorcontrib><creatorcontrib>Meyer, A.S</creatorcontrib><title>Efficiency of New Fungal Cellulase Systems in Boosting Enzymatic Degradation of Barley Straw Lignocellulose</title><title>Biotechnology progress</title><addtitle>Biotechnol Progress</addtitle><description>This study examined the cellulytic effects on steam‐pretreated barley straw of cellulose‐degrading enzyme systems from the five thermophilic fungi Chaetomium thermophilum, Thielavia terrestris, Thermoascus aurantiacus, Corynascus thermophilus, and Myceliophthora thermophila and from the mesophile Penicillum funiculosum. The catalytic glucose release was compared after treatments with each of the crude enzyme systems when added to a benchmark blend of a commercial cellulase product, Celluclast, derived from Trichoderma reesei and a β‐glucosidase, Novozym 188, from Aspergillus niger. The enzymatic treatments were evaluated in an experimental design template comprising a span of pH (3.5–6.5) and temperature (35–65 °C) reaction combinations. The addition to Celluclast + Novozym 188 of low dosages of the crude enzyme systems, corresponding to 10 wt % of the total enzyme protein load, increased the catalytic glucose yields significantly as compared to those obtained with the benchmark Celluclast + Novozyme 188 blend. A comparison of glucose yields obtained on steam‐pretreated barley straw and microcrystalline cellulose, Avicel, indicated that the yield improvements were mainly due to the presence of highly active endoglucanase activity/activities in the experimental enzyme preparations. The data demonstrated the feasibility of boosting the widely studied T. reeseicellulase enzyme system with additional enzymatic activity to achieve faster lignocellulose degradation. We conclude that this supplementation strategy appears feasible as a first step in identifying truly promising fungal enzyme sources for fast development of improved, commercially viable, enzyme preparations for lignocellulose degradation.</description><subject>Ascomycota - enzymology</subject><subject>Aspergillus niger</subject><subject>barley straw</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cellobiose - metabolism</subject><subject>Cellulase - metabolism</subject><subject>cellulases</subject><subject>cellulolytic microorganisms</subject><subject>Cellulose - metabolism</subject><subject>Chaetomium</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Chromatography, Ion Exchange</subject><subject>Culture Media</subject><subject>enzymatic hydrolysis</subject><subject>enzymatic treatment</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>fungi</subject><subject>glucose</subject><subject>Glucose - metabolism</subject><subject>Hordeum - enzymology</subject><subject>Hordeum vulgare</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysis</subject><subject>Hypocrea jecorina</subject><subject>Lignin - metabolism</subject><subject>lignocellulose</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Myceliophthora thermophila</subject><subject>Plant Stems - enzymology</subject><subject>pretreatment</subject><subject>steaming</subject><subject>Substrate Specificity</subject><subject>Temperature</subject><subject>Thermoascus aurantiacus</subject><subject>thermophilic fungi</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqF0U1vEzEQBuAVAtG0cOAPgC8gcVgY2_HHHpuQFpQooKQVR8vrtVemm3WwE6Xh1-M0UXtCnDyHZ17bM0XxBsMnDAR_rtfAgHIcnhUDzAiUHCh9XgykYLwUFZVnxXlKvwBAAicvizPMWVUxLgbF3cQ5b7ztzR4Fh-Z2h662fas7NLZdt-10smi5Txu7Ssj3aBRC2vi-RZP-z36lN96gL7aNusll6A8JIx07u0fLTdQ7NPNtH8xDUEj2VfHC6S7Z16fzori9mtyMv5az79ffxpez0gyHApecYC2BMGFFw3ElZeOI4BqamlVEUmissxQb6QwHQypnHSfW1VQw0FBTSS-KD8fcdQy_tzZt1Mqnwyt0b8M2KS4krRj7PyRAhpJJluHHIzQxpBStU-voVzruFQZ1WIF6XEG2b0-h23plmyd5mnkG709AJ6M7F3VvfHpyMkNBDw6ObufzRP99oxrd_Fg8lLmlPLb4vLH7xxYd7_Kn84DUz_m1WkynbL4cT9Ui-3dH73RQuo35GbdLApgCBskrSulflXe14g</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Rosgaard, L</creator><creator>Pedersen, S</creator><creator>Cherry, J.R</creator><creator>Harris, P</creator><creator>Meyer, A.S</creator><general>American Chemical Society</general><general>American Institute of Chemical Engineers</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20060301</creationdate><title>Efficiency of New Fungal Cellulase Systems in Boosting Enzymatic Degradation of Barley Straw Lignocellulose</title><author>Rosgaard, L ; Pedersen, S ; Cherry, J.R ; Harris, P ; Meyer, A.S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4471-621a80257e7d61988df276a0db592830defe31c8fc60c29fef62efb3750a0b383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Ascomycota - enzymology</topic><topic>Aspergillus niger</topic><topic>barley straw</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cellobiose - metabolism</topic><topic>Cellulase - metabolism</topic><topic>cellulases</topic><topic>cellulolytic microorganisms</topic><topic>Cellulose - metabolism</topic><topic>Chaetomium</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Chromatography, Ion Exchange</topic><topic>Culture Media</topic><topic>enzymatic hydrolysis</topic><topic>enzymatic treatment</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>fungi</topic><topic>glucose</topic><topic>Glucose - metabolism</topic><topic>Hordeum - enzymology</topic><topic>Hordeum vulgare</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysis</topic><topic>Hypocrea jecorina</topic><topic>Lignin - metabolism</topic><topic>lignocellulose</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Myceliophthora thermophila</topic><topic>Plant Stems - enzymology</topic><topic>pretreatment</topic><topic>steaming</topic><topic>Substrate Specificity</topic><topic>Temperature</topic><topic>Thermoascus aurantiacus</topic><topic>thermophilic fungi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosgaard, L</creatorcontrib><creatorcontrib>Pedersen, S</creatorcontrib><creatorcontrib>Cherry, J.R</creatorcontrib><creatorcontrib>Harris, P</creatorcontrib><creatorcontrib>Meyer, A.S</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosgaard, L</au><au>Pedersen, S</au><au>Cherry, J.R</au><au>Harris, P</au><au>Meyer, A.S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficiency of New Fungal Cellulase Systems in Boosting Enzymatic Degradation of Barley Straw Lignocellulose</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Progress</addtitle><date>2006-03-01</date><risdate>2006</risdate><volume>22</volume><issue>2</issue><spage>493</spage><epage>498</epage><pages>493-498</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><coden>BIPRET</coden><abstract>This study examined the cellulytic effects on steam‐pretreated barley straw of cellulose‐degrading enzyme systems from the five thermophilic fungi Chaetomium thermophilum, Thielavia terrestris, Thermoascus aurantiacus, Corynascus thermophilus, and Myceliophthora thermophila and from the mesophile Penicillum funiculosum. The catalytic glucose release was compared after treatments with each of the crude enzyme systems when added to a benchmark blend of a commercial cellulase product, Celluclast, derived from Trichoderma reesei and a β‐glucosidase, Novozym 188, from Aspergillus niger. The enzymatic treatments were evaluated in an experimental design template comprising a span of pH (3.5–6.5) and temperature (35–65 °C) reaction combinations. The addition to Celluclast + Novozym 188 of low dosages of the crude enzyme systems, corresponding to 10 wt % of the total enzyme protein load, increased the catalytic glucose yields significantly as compared to those obtained with the benchmark Celluclast + Novozyme 188 blend. A comparison of glucose yields obtained on steam‐pretreated barley straw and microcrystalline cellulose, Avicel, indicated that the yield improvements were mainly due to the presence of highly active endoglucanase activity/activities in the experimental enzyme preparations. The data demonstrated the feasibility of boosting the widely studied T. reeseicellulase enzyme system with additional enzymatic activity to achieve faster lignocellulose degradation. We conclude that this supplementation strategy appears feasible as a first step in identifying truly promising fungal enzyme sources for fast development of improved, commercially viable, enzyme preparations for lignocellulose degradation.</abstract><cop>USA</cop><pub>American Chemical Society</pub><pmid>16599567</pmid><doi>10.1021/bp050361o</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 8756-7938
ispartof Biotechnology progress, 2006-03, Vol.22 (2), p.493-498
issn 8756-7938
1520-6033
language eng
recordid cdi_proquest_miscellaneous_67839558
source Wiley-Blackwell Read & Publish Collection
subjects Ascomycota - enzymology
Aspergillus niger
barley straw
Biological and medical sciences
Biotechnology
Cellobiose - metabolism
Cellulase - metabolism
cellulases
cellulolytic microorganisms
Cellulose - metabolism
Chaetomium
Chromatography, High Pressure Liquid
Chromatography, Ion Exchange
Culture Media
enzymatic hydrolysis
enzymatic treatment
Fermentation
Fundamental and applied biological sciences. Psychology
fungi
glucose
Glucose - metabolism
Hordeum - enzymology
Hordeum vulgare
Hydrogen-Ion Concentration
Hydrolysis
Hypocrea jecorina
Lignin - metabolism
lignocellulose
Multienzyme Complexes - metabolism
Myceliophthora thermophila
Plant Stems - enzymology
pretreatment
steaming
Substrate Specificity
Temperature
Thermoascus aurantiacus
thermophilic fungi
title Efficiency of New Fungal Cellulase Systems in Boosting Enzymatic Degradation of Barley Straw Lignocellulose
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T16%3A33%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficiency%20of%20New%20Fungal%20Cellulase%20Systems%20in%20Boosting%20Enzymatic%20Degradation%20of%20Barley%20Straw%20Lignocellulose&rft.jtitle=Biotechnology%20progress&rft.au=Rosgaard,%20L&rft.date=2006-03-01&rft.volume=22&rft.issue=2&rft.spage=493&rft.epage=498&rft.pages=493-498&rft.issn=8756-7938&rft.eissn=1520-6033&rft.coden=BIPRET&rft_id=info:doi/10.1021/bp050361o&rft_dat=%3Cproquest_cross%3E67839558%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4471-621a80257e7d61988df276a0db592830defe31c8fc60c29fef62efb3750a0b383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20248585&rft_id=info:pmid/16599567&rfr_iscdi=true