Loading…
Example of Fatty Acid-Loaded Lipoplex in Enhancing in Vitro Gene Transfer Efficacies of Cationic Amphiphile
Herein, we report on the design and synthesis of a novel nontoxic cationic amphiphile N,N-di-n-tetradecyl-N-[2-[N‘,N‘-bis(2-hydroxyethyl)amino]ethyl]-N-(2-hydroxyethyl)ammonium chloride (lipid 1) whose in vitro gene transfer efficacies in CHO, COS-1, MCF-7, and HepG2 cells are remarkably enhanced wh...
Saved in:
Published in: | Bioconjugate chemistry 2005-05, Vol.16 (3), p.676-684 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Herein, we report on the design and synthesis of a novel nontoxic cationic amphiphile N,N-di-n-tetradecyl-N-[2-[N‘,N‘-bis(2-hydroxyethyl)amino]ethyl]-N-(2-hydroxyethyl)ammonium chloride (lipid 1) whose in vitro gene transfer efficacies in CHO, COS-1, MCF-7, and HepG2 cells are remarkably enhanced when used in combination with 30 mole percent added myristic acid. Reporter gene expression assay using p-CMV-SPORT-β-gal reporter gene revealed poor gene transfer properties of the cationic liposomes of lipid 1 and cholesterol (colipid). However, the in vitro gene delivery efficacies of lipid 1 were found to be remarkably enhanced when the cationic liposomes of lipid 1 and cholesterol were prepared in the presence of 30 mole percent added myristic acid (with respect to lipid 1) as the third liposomal ingredient. The whole cell histochemical X-gal staining of representative CHO cells further confirmed the significantly enhanced gene transfer properties of the fatty acid-loaded cationic liposomes of lipid 1 and cholesterol. Electrophoretic gel patterns in the gel mobility shift assay supports the notion that better DNA release from fatty acid lipoplexes might play a role in their enhanced gene transfer properties. In addition, such myristic acid-loaded lipoplexes of lipid 1 were also found to be serum-compatible up to 30% added serum. Taken together, our present findings demonstrate that the transfection efficacies of fatty acid-loaded lipoplexes are worth evaluating particularly when traditional cationic liposomes prepared with either cholesterol or DOPE colipids fail to transfect cultured cells. |
---|---|
ISSN: | 1043-1802 1520-4812 |
DOI: | 10.1021/bc049687t |