Loading…

Equilibrium polymerization in the Stockmayer fluid as a model of supermolecular self-organization

A diverse range of molecular self-organization processes arises from a competition between directional and isotropic van der Waals intermolecular interactions. We conduct Monte Carlo simulations of the Stockmayer fluid (SF) with a large dipolar interaction as a minimal self-organization model and fo...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2005-03, Vol.71 (3 Pt 1), p.031502-031502, Article 031502
Main Authors: Van Workum, Kevin, Douglas, Jack F
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-25e9f8e8c609f25b8681b67118ee55fe25decc2ade8688893ee132f98ff4f4653
cites cdi_FETCH-LOGICAL-c367t-25e9f8e8c609f25b8681b67118ee55fe25decc2ade8688893ee132f98ff4f4653
container_end_page 031502
container_issue 3 Pt 1
container_start_page 031502
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 71
creator Van Workum, Kevin
Douglas, Jack F
description A diverse range of molecular self-organization processes arises from a competition between directional and isotropic van der Waals intermolecular interactions. We conduct Monte Carlo simulations of the Stockmayer fluid (SF) with a large dipolar interaction as a minimal self-organization model and focus on basic thermodynamic properties that are needed to characterize the polymerization transition that occurs in this fluid. In particular, we determine the polymerization transition lines from the maximum in the specific heat, C(v), and the inflection point in the extent of polymerization, Phi. We also characterize the geometry (radius of gyration R(g), chain length L, chain topology) of the clusters that form in this associating fluid as a function of temperature, T, and concentration, rho . The pressure, P, and the second virial coefficient, B2, were determined, since these properties contain essential information about the strength of the isotropic (van der Waals) interactions. Our simulations indicate that the locations of the polymerization lines are quantitatively consistent with a model of equilibrium polymerization with the enthalpy of polymerization ("sticking energy") fixed by the minimum in the intermolecular potential. The polymerization transition in the SF is accompanied by a topological transition from predominantly linear to ring polymers upon cooling that is driven by the minimization of the dipolar energy of the clusters. We also find that the basic interaction parameters describing polymerization and phase separation in the SF can be estimated based on the existing theory of equilibrium polymerization, but the theory must be refined to account for ring formation in order to accurately describe the configurational properties of this model self-organizing fluid.
doi_str_mv 10.1103/physreve.71.031502
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67844453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67844453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-25e9f8e8c609f25b8681b67118ee55fe25decc2ade8688893ee132f98ff4f4653</originalsourceid><addsrcrecordid>eNpFkMlOwzAURS0EoqXwAyyQV-xSPMSJs0RVGaRKIIZ15CTP1ODEqZ1UCl9PqkZi9a707j2Lg9A1JUtKCb9rt0PwsIdlSpeEU0HYCZpTIUjEeJqcHjLPIp4KMUMXIXwTwhmX8TmaUZERHnMyR2q96401hTd9jVtnhxq8-VWdcQ02De62gN87V_7UagCPte1NhVXACteuAoudxqFvwdfOQtlb5XEAqyPnv1QzYS7RmVY2wNV0F-jzYf2xeoo2L4_Pq_tNVPIk7SImINMSZJmQTDNRyETSIkkplQBCaGCigrJkqoLxI2XGAShnOpNaxzpOBF-g2yO39W7XQ-jy2oQSrFUNuD7kSSrjOBZ8LLJjsfQujAJ13npTKz_klOQHsfnrKPYN9us8pflR7Di6meh9UUP1P5lM8j_UQHhU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67844453</pqid></control><display><type>article</type><title>Equilibrium polymerization in the Stockmayer fluid as a model of supermolecular self-organization</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Van Workum, Kevin ; Douglas, Jack F</creator><creatorcontrib>Van Workum, Kevin ; Douglas, Jack F</creatorcontrib><description>A diverse range of molecular self-organization processes arises from a competition between directional and isotropic van der Waals intermolecular interactions. We conduct Monte Carlo simulations of the Stockmayer fluid (SF) with a large dipolar interaction as a minimal self-organization model and focus on basic thermodynamic properties that are needed to characterize the polymerization transition that occurs in this fluid. In particular, we determine the polymerization transition lines from the maximum in the specific heat, C(v), and the inflection point in the extent of polymerization, Phi. We also characterize the geometry (radius of gyration R(g), chain length L, chain topology) of the clusters that form in this associating fluid as a function of temperature, T, and concentration, rho . The pressure, P, and the second virial coefficient, B2, were determined, since these properties contain essential information about the strength of the isotropic (van der Waals) interactions. Our simulations indicate that the locations of the polymerization lines are quantitatively consistent with a model of equilibrium polymerization with the enthalpy of polymerization ("sticking energy") fixed by the minimum in the intermolecular potential. The polymerization transition in the SF is accompanied by a topological transition from predominantly linear to ring polymers upon cooling that is driven by the minimization of the dipolar energy of the clusters. We also find that the basic interaction parameters describing polymerization and phase separation in the SF can be estimated based on the existing theory of equilibrium polymerization, but the theory must be refined to account for ring formation in order to accurately describe the configurational properties of this model self-organizing fluid.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/physreve.71.031502</identifier><identifier>PMID: 15903430</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2005-03, Vol.71 (3 Pt 1), p.031502-031502, Article 031502</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-25e9f8e8c609f25b8681b67118ee55fe25decc2ade8688893ee132f98ff4f4653</citedby><cites>FETCH-LOGICAL-c367t-25e9f8e8c609f25b8681b67118ee55fe25decc2ade8688893ee132f98ff4f4653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15903430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Workum, Kevin</creatorcontrib><creatorcontrib>Douglas, Jack F</creatorcontrib><title>Equilibrium polymerization in the Stockmayer fluid as a model of supermolecular self-organization</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>A diverse range of molecular self-organization processes arises from a competition between directional and isotropic van der Waals intermolecular interactions. We conduct Monte Carlo simulations of the Stockmayer fluid (SF) with a large dipolar interaction as a minimal self-organization model and focus on basic thermodynamic properties that are needed to characterize the polymerization transition that occurs in this fluid. In particular, we determine the polymerization transition lines from the maximum in the specific heat, C(v), and the inflection point in the extent of polymerization, Phi. We also characterize the geometry (radius of gyration R(g), chain length L, chain topology) of the clusters that form in this associating fluid as a function of temperature, T, and concentration, rho . The pressure, P, and the second virial coefficient, B2, were determined, since these properties contain essential information about the strength of the isotropic (van der Waals) interactions. Our simulations indicate that the locations of the polymerization lines are quantitatively consistent with a model of equilibrium polymerization with the enthalpy of polymerization ("sticking energy") fixed by the minimum in the intermolecular potential. The polymerization transition in the SF is accompanied by a topological transition from predominantly linear to ring polymers upon cooling that is driven by the minimization of the dipolar energy of the clusters. We also find that the basic interaction parameters describing polymerization and phase separation in the SF can be estimated based on the existing theory of equilibrium polymerization, but the theory must be refined to account for ring formation in order to accurately describe the configurational properties of this model self-organizing fluid.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkMlOwzAURS0EoqXwAyyQV-xSPMSJs0RVGaRKIIZ15CTP1ODEqZ1UCl9PqkZi9a707j2Lg9A1JUtKCb9rt0PwsIdlSpeEU0HYCZpTIUjEeJqcHjLPIp4KMUMXIXwTwhmX8TmaUZERHnMyR2q96401hTd9jVtnhxq8-VWdcQ02De62gN87V_7UagCPte1NhVXACteuAoudxqFvwdfOQtlb5XEAqyPnv1QzYS7RmVY2wNV0F-jzYf2xeoo2L4_Pq_tNVPIk7SImINMSZJmQTDNRyETSIkkplQBCaGCigrJkqoLxI2XGAShnOpNaxzpOBF-g2yO39W7XQ-jy2oQSrFUNuD7kSSrjOBZ8LLJjsfQujAJ13npTKz_klOQHsfnrKPYN9us8pflR7Di6meh9UUP1P5lM8j_UQHhU</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Van Workum, Kevin</creator><creator>Douglas, Jack F</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050301</creationdate><title>Equilibrium polymerization in the Stockmayer fluid as a model of supermolecular self-organization</title><author>Van Workum, Kevin ; Douglas, Jack F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-25e9f8e8c609f25b8681b67118ee55fe25decc2ade8688893ee132f98ff4f4653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Workum, Kevin</creatorcontrib><creatorcontrib>Douglas, Jack F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Workum, Kevin</au><au>Douglas, Jack F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equilibrium polymerization in the Stockmayer fluid as a model of supermolecular self-organization</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2005-03-01</date><risdate>2005</risdate><volume>71</volume><issue>3 Pt 1</issue><spage>031502</spage><epage>031502</epage><pages>031502-031502</pages><artnum>031502</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>A diverse range of molecular self-organization processes arises from a competition between directional and isotropic van der Waals intermolecular interactions. We conduct Monte Carlo simulations of the Stockmayer fluid (SF) with a large dipolar interaction as a minimal self-organization model and focus on basic thermodynamic properties that are needed to characterize the polymerization transition that occurs in this fluid. In particular, we determine the polymerization transition lines from the maximum in the specific heat, C(v), and the inflection point in the extent of polymerization, Phi. We also characterize the geometry (radius of gyration R(g), chain length L, chain topology) of the clusters that form in this associating fluid as a function of temperature, T, and concentration, rho . The pressure, P, and the second virial coefficient, B2, were determined, since these properties contain essential information about the strength of the isotropic (van der Waals) interactions. Our simulations indicate that the locations of the polymerization lines are quantitatively consistent with a model of equilibrium polymerization with the enthalpy of polymerization ("sticking energy") fixed by the minimum in the intermolecular potential. The polymerization transition in the SF is accompanied by a topological transition from predominantly linear to ring polymers upon cooling that is driven by the minimization of the dipolar energy of the clusters. We also find that the basic interaction parameters describing polymerization and phase separation in the SF can be estimated based on the existing theory of equilibrium polymerization, but the theory must be refined to account for ring formation in order to accurately describe the configurational properties of this model self-organizing fluid.</abstract><cop>United States</cop><pmid>15903430</pmid><doi>10.1103/physreve.71.031502</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2005-03, Vol.71 (3 Pt 1), p.031502-031502, Article 031502
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_67844453
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Equilibrium polymerization in the Stockmayer fluid as a model of supermolecular self-organization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A38%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equilibrium%20polymerization%20in%20the%20Stockmayer%20fluid%20as%20a%20model%20of%20supermolecular%20self-organization&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Van%20Workum,%20Kevin&rft.date=2005-03-01&rft.volume=71&rft.issue=3%20Pt%201&rft.spage=031502&rft.epage=031502&rft.pages=031502-031502&rft.artnum=031502&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/physreve.71.031502&rft_dat=%3Cproquest_cross%3E67844453%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-25e9f8e8c609f25b8681b67118ee55fe25decc2ade8688893ee132f98ff4f4653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67844453&rft_id=info:pmid/15903430&rfr_iscdi=true