Loading…

Sexually Dimorphic Expression of the Novel Germ Cell Antigen TEX101 During Mouse Gonad Development

Prospermatogonia, or gonocytes, are the cells that differentiate from primordial germ cells to the first mature type of spermatogonia in the developing testis. Although prospermatogonia play a central role in this stage (i.e., prespermatogenesis), the details regarding their characterization have no...

Full description

Saved in:
Bibliographic Details
Published in:Biology of reproduction 2005-06, Vol.72 (6), p.1315-1323
Main Authors: Takayama, Takeshi, Mishima, Takuya, Mori, Miki, Jin, Hong, Tsukamoto, Hiroki, Takahashi, Katsumasa, Takizawa, Takami, Kinoshita, Katsuyuki, Suzuki, Mitsuaki, Sato, Ikuo, Matsubara, Shigeki, Araki, Yoshihiko, Takizawa, Toshihiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Prospermatogonia, or gonocytes, are the cells that differentiate from primordial germ cells to the first mature type of spermatogonia in the developing testis. Although prospermatogonia play a central role in this stage (i.e., prespermatogenesis), the details regarding their characterization have not been fully elucidated. Recently, we identified a novel mouse testicular germ cell-specific antigen, TES101 reactive protein (TES101RP), in the adult mouse testis. The protein TES101RP is also designated as protein TEX101. In the present study, we investigated the expression of TEX101 on germ cells in developing mouse gonads using histochemical techniques (i.e., immunohistochemistry, BrdU labeling, and TUNEL staining) and reverse transcription-polymerase chain reaction. TEX101 appeared on germ cells in both male and female gonads after the pregonadal period. In the testis, TEX101 was expressed constitutively on surviving prospermatogonia during prespermatogenesis. After the initiation of spermatogenesis, the prospermatogonia differentiated into spermatogonia. TEX101 expression disappeared from the spermatogonia, but reappeared on spermatocytes and spermatids. In the ovary, TEX101 was expressed on germ cells until the start of folliculogenesis; TEX101 was not detected on oocytes that were surrounded by follicular cells. These findings indicate that TEX101 is a specific marker for both male and female germ cells during gonadal development. Because the on and off switching of TEX101 expression in germ cells almost parallels the kinetics of gametogenesis, TEX101 may play an important physiological role in germ cell development.
ISSN:0006-3363
1529-7268
DOI:10.1095/biolreprod.104.038810