Loading…

Self-organized criticality and absorbing states: lessons from the Ising model

We investigate a suggested path to self-organized criticality. Originally, this path was devised to "generate criticality" in systems displaying an absorbing-state phase transition, but nothing in its definition forbids the mechanism to be used in any other continuous phase transition. We...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2006-02, Vol.73 (2 Pt 2), p.025106-025106, Article 025106
Main Authors: Pruessner, Gunnar, Peters, Ole
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate a suggested path to self-organized criticality. Originally, this path was devised to "generate criticality" in systems displaying an absorbing-state phase transition, but nothing in its definition forbids the mechanism to be used in any other continuous phase transition. We used the Ising model as well as the Manna model to demonstrate how the finite-size scaling exponents depend on the tuning of driving and dissipation rates with system size. Our findings limit the explanatory power of the mechanism as it is to nonuniversal critical behavior, suggesting that the explanation of self-organized criticality in terms of absorbing-state phase transitions is incomplete.
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.73.025106