Loading…

Topological mixing with ghost rods

Topological chaos relies on the periodic motion of obstacles in a two-dimensional flow in order to form nontrivial braids. This motion generates exponential stretching of material lines, and hence efficient mixing. Boyland, Aref, and Stremler [J. Fluid Mech. 403, 277 (2000)] have studied a specific...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2006-03, Vol.73 (3 Pt 2), p.036311-036311, Article 036311
Main Authors: Gouillart, Emmanuelle, Thiffeault, Jean-Luc, Finn, Matthew D
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c345t-f14d830227a54642405c737553344e10c5c82944f578b6e5fef5ea8e62a59df73
cites cdi_FETCH-LOGICAL-c345t-f14d830227a54642405c737553344e10c5c82944f578b6e5fef5ea8e62a59df73
container_end_page 036311
container_issue 3 Pt 2
container_start_page 036311
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 73
creator Gouillart, Emmanuelle
Thiffeault, Jean-Luc
Finn, Matthew D
description Topological chaos relies on the periodic motion of obstacles in a two-dimensional flow in order to form nontrivial braids. This motion generates exponential stretching of material lines, and hence efficient mixing. Boyland, Aref, and Stremler [J. Fluid Mech. 403, 277 (2000)] have studied a specific periodic motion of rods that exhibits topological chaos in a viscous fluid. We show that it is possible to extend their work to cases where the motion of the stirring rods is topologically trivial by considering the dynamics of special periodic points that we call "ghost rods", because they play a similar role to stirring rods. The ghost rods framework provides a new technique for quantifying chaos and gives insight into the mechanisms that produce chaos and mixing. Numerical simulations for Stokes flow support our results.
doi_str_mv 10.1103/PhysRevE.73.036311
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67849923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67849923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-f14d830227a54642405c737553344e10c5c82944f578b6e5fef5ea8e62a59df73</originalsourceid><addsrcrecordid>eNpFkM1LwzAYxoMobk7_AQ9SPHjrTPLmTdqjjPkBA0XmOWRp0lbaZTadc_-9G5t4ep7D8wE_Qq4ZHTNG4f6t2sZ39z0dKxhTkMDYCRkyRJpyUPJ07yFPQSEOyEWMn5QCh0yckwGTkqJEHJLbeViFJpS1NU3S1j_1skw2dV8lZRVin3ShiJfkzJsmuqujjsjH43Q-eU5nr08vk4dZakFgn3omigwo58qgkIILilbtzwGEcIxatBnPhfCosoV06J1HZzInucG88ApG5O6wu-rC19rFXrd1tK5pzNKFddRSZSLPOeyC_BC0XYixc16vuro13VYzqvdk9B8ZrUAfyOxKN8f19aJ1xX_liAJ-AZW2Xqk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67849923</pqid></control><display><type>article</type><title>Topological mixing with ghost rods</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Gouillart, Emmanuelle ; Thiffeault, Jean-Luc ; Finn, Matthew D</creator><creatorcontrib>Gouillart, Emmanuelle ; Thiffeault, Jean-Luc ; Finn, Matthew D</creatorcontrib><description>Topological chaos relies on the periodic motion of obstacles in a two-dimensional flow in order to form nontrivial braids. This motion generates exponential stretching of material lines, and hence efficient mixing. Boyland, Aref, and Stremler [J. Fluid Mech. 403, 277 (2000)] have studied a specific periodic motion of rods that exhibits topological chaos in a viscous fluid. We show that it is possible to extend their work to cases where the motion of the stirring rods is topologically trivial by considering the dynamics of special periodic points that we call "ghost rods", because they play a similar role to stirring rods. The ghost rods framework provides a new technique for quantifying chaos and gives insight into the mechanisms that produce chaos and mixing. Numerical simulations for Stokes flow support our results.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.73.036311</identifier><identifier>PMID: 16605655</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2006-03, Vol.73 (3 Pt 2), p.036311-036311, Article 036311</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-f14d830227a54642405c737553344e10c5c82944f578b6e5fef5ea8e62a59df73</citedby><cites>FETCH-LOGICAL-c345t-f14d830227a54642405c737553344e10c5c82944f578b6e5fef5ea8e62a59df73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16605655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gouillart, Emmanuelle</creatorcontrib><creatorcontrib>Thiffeault, Jean-Luc</creatorcontrib><creatorcontrib>Finn, Matthew D</creatorcontrib><title>Topological mixing with ghost rods</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>Topological chaos relies on the periodic motion of obstacles in a two-dimensional flow in order to form nontrivial braids. This motion generates exponential stretching of material lines, and hence efficient mixing. Boyland, Aref, and Stremler [J. Fluid Mech. 403, 277 (2000)] have studied a specific periodic motion of rods that exhibits topological chaos in a viscous fluid. We show that it is possible to extend their work to cases where the motion of the stirring rods is topologically trivial by considering the dynamics of special periodic points that we call "ghost rods", because they play a similar role to stirring rods. The ghost rods framework provides a new technique for quantifying chaos and gives insight into the mechanisms that produce chaos and mixing. Numerical simulations for Stokes flow support our results.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LwzAYxoMobk7_AQ9SPHjrTPLmTdqjjPkBA0XmOWRp0lbaZTadc_-9G5t4ep7D8wE_Qq4ZHTNG4f6t2sZ39z0dKxhTkMDYCRkyRJpyUPJ07yFPQSEOyEWMn5QCh0yckwGTkqJEHJLbeViFJpS1NU3S1j_1skw2dV8lZRVin3ShiJfkzJsmuqujjsjH43Q-eU5nr08vk4dZakFgn3omigwo58qgkIILilbtzwGEcIxatBnPhfCosoV06J1HZzInucG88ApG5O6wu-rC19rFXrd1tK5pzNKFddRSZSLPOeyC_BC0XYixc16vuro13VYzqvdk9B8ZrUAfyOxKN8f19aJ1xX_liAJ-AZW2Xqk</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Gouillart, Emmanuelle</creator><creator>Thiffeault, Jean-Luc</creator><creator>Finn, Matthew D</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060301</creationdate><title>Topological mixing with ghost rods</title><author>Gouillart, Emmanuelle ; Thiffeault, Jean-Luc ; Finn, Matthew D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-f14d830227a54642405c737553344e10c5c82944f578b6e5fef5ea8e62a59df73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Gouillart, Emmanuelle</creatorcontrib><creatorcontrib>Thiffeault, Jean-Luc</creatorcontrib><creatorcontrib>Finn, Matthew D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gouillart, Emmanuelle</au><au>Thiffeault, Jean-Luc</au><au>Finn, Matthew D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological mixing with ghost rods</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2006-03-01</date><risdate>2006</risdate><volume>73</volume><issue>3 Pt 2</issue><spage>036311</spage><epage>036311</epage><pages>036311-036311</pages><artnum>036311</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>Topological chaos relies on the periodic motion of obstacles in a two-dimensional flow in order to form nontrivial braids. This motion generates exponential stretching of material lines, and hence efficient mixing. Boyland, Aref, and Stremler [J. Fluid Mech. 403, 277 (2000)] have studied a specific periodic motion of rods that exhibits topological chaos in a viscous fluid. We show that it is possible to extend their work to cases where the motion of the stirring rods is topologically trivial by considering the dynamics of special periodic points that we call "ghost rods", because they play a similar role to stirring rods. The ghost rods framework provides a new technique for quantifying chaos and gives insight into the mechanisms that produce chaos and mixing. Numerical simulations for Stokes flow support our results.</abstract><cop>United States</cop><pmid>16605655</pmid><doi>10.1103/PhysRevE.73.036311</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2006-03, Vol.73 (3 Pt 2), p.036311-036311, Article 036311
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_67849923
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Topological mixing with ghost rods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A43%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20mixing%20with%20ghost%20rods&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Gouillart,%20Emmanuelle&rft.date=2006-03-01&rft.volume=73&rft.issue=3%20Pt%202&rft.spage=036311&rft.epage=036311&rft.pages=036311-036311&rft.artnum=036311&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.73.036311&rft_dat=%3Cproquest_cross%3E67849923%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-f14d830227a54642405c737553344e10c5c82944f578b6e5fef5ea8e62a59df73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67849923&rft_id=info:pmid/16605655&rfr_iscdi=true