Loading…
Molecular dynamics integration and molecular vibrational theory. II. Simulation of nonlinear molecules
A series of molecular dynamics (MD) simulations of nonlinear molecules has been performed to test the efficiency of newly introduced semianalytical second-order symplectic time-reversible MD integrators that combine MD and the standard theory of molecular vibrations. The simulation results indicate...
Saved in:
Published in: | The Journal of chemical physics 2005-05, Vol.122 (17), p.174102-174102 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A series of molecular dynamics (MD) simulations of nonlinear molecules has been performed to test the efficiency of newly introduced semianalytical second-order symplectic time-reversible MD integrators that combine MD and the standard theory of molecular vibrations. The simulation results indicate that for the same level of accuracy, the new algorithms allow significantly longer integration time steps than the standard second-order symplectic leap-frog Verlet method. Since the computation cost per integration step using new MD integrators with longer time steps is approximately the same as for the standard method, a significant speed-up in MD simulation is achieved. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.1884608 |