Loading…

Programmed Potential Sweep Voltammetry for Lower Detection Limits

We report a novel programmed potential sweep voltammetry for a much lower detection limit than those achieved by any other known electroanalyitcal techniques. In this technique, an input waveform is programmed such that the background current would become flat or any other predefined form in the pot...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2005-06, Vol.77 (11), p.3694-3699
Main Authors: Yoo, Jung-Suk, Park, Su-Moon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report a novel programmed potential sweep voltammetry for a much lower detection limit than those achieved by any other known electroanalyitcal techniques. In this technique, an input waveform is programmed such that the background current would become flat or any other predefined form in the potential region of interest where the peak current arising from the analyte is observed, followed by the amplification of the background subtracted peak current. The current thus obtained showed a much better signal integrity at very low analyte concentrations than those obtained by the traditional linear sweep voltammetric and other related voltammetric techniques. The technique was applied to the analysis of dopamine at a carbon ultramicroelectrode (10-μm diameter). The background-compensated currents showed excellent dynamic linearity for dopamine concentrations of more than 3 orders of magnitudes between 500 pM and 100 nM with an estimated detection limit of 127 pM. This method can provide a convenient way for determining biogenic amines in real time with a much higher sensitivity.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac0481598