Loading…
Factors Influencing the Initial Micromotion Between Polyethylene Acetabular Cups and Titanium Alloy Shells
Mechanical test factors affecting short-term rotational stability under combined torsional and compressive loading was assessed in modular press-fit acetabular components with 4 different locking mechanism designs, by measuring the micromotion of the liner-shell interface at either room (20°C) or bo...
Saved in:
Published in: | The Journal of arthroplasty 2006-04, Vol.21 (3), p.443-448 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mechanical test factors affecting short-term rotational stability under combined torsional and compressive loading was assessed in modular press-fit acetabular components with 4 different locking mechanism designs, by measuring the micromotion of the liner-shell interface at either room (20°C) or body temperature (37°C) and with either a high (2943 N) or low (490 N) compressive load. Liner-shell constructs whose short-term stability was statistically significantly affected by temperature exhibited more rotational stability at body temperature than at room temperature. Liner-shell constructs whose short-term stability was statistically significantly affected by the level of compressive load exhibited more rotational stability with high compressive loads than with low loads. Liner-shell constructs with different locking mechanism designs were influenced by temperature and compressive loads differently. It is recommended to consider including these factors in tests of acetabular component locking mechanisms. |
---|---|
ISSN: | 0883-5403 1532-8406 |
DOI: | 10.1016/j.arth.2005.04.039 |