Loading…

Conservation of promoter, coding, and intronic regions of the non-classical MHC class II DYA gene suggests evolution under functional constraints

The major histocompatibility complex (MHC) in ruminants contains a unique pair of class II genes (DYA and DYB) of unknown function. As functional genes show higher levels of nucleotide conservation than pseudogenes we compared the DYA genes from sheep and cattle, two species which diverged from a co...

Full description

Saved in:
Bibliographic Details
Published in:Animal genetics 2005-06, Vol.36 (3), p.237-239
Main Authors: Ballingall, K.T, McKeever, D.J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The major histocompatibility complex (MHC) in ruminants contains a unique pair of class II genes (DYA and DYB) of unknown function. As functional genes show higher levels of nucleotide conservation than pseudogenes we compared the DYA genes from sheep and cattle, two species which diverged from a common ancestor approximately 20 million years ago. Comparative analysis identified levels of nucleotide conservation in immediate promoter (97%), coding (94%) and intronic regions (91%) comparable with functional MHC genes. The Ovar-DYA transcript revealed an open reading frame encoding a 288 amino acid protein compared with a 253 amino acid protein associated with the BoLA-DYA transcript. A dinucleotide deletion in exon 4 of the Ovar-DYA transcript combined with alternative exon 5 splice sites introduces unusual diversity to the cytoplasmic domain of the Ovar-DYalpha polypeptide. The degree of conservation between these class II MHC genes is consistent with evolution under purifying selection suggesting that these genes retain a unique function in ruminants.
ISSN:0268-9146
1365-2052
DOI:10.1111/j.1365-2052.2005.01281.x