Loading…
Endothelium-derived nitric oxide regulates postischemic myocardial oxygenation and oxygen consumption by modulation of mitochondrial electron transport
Nitric oxide (NO) production is increased in postischemic myocardium, and NO can control mitochondrial oxygen consumption in vitro. Therefore, we investigated the role of endothelial NO synthase (eNOS)-derived NO on in vivo regulation of oxygen consumption in the postischemic heart. Mice were subjec...
Saved in:
Published in: | Circulation (New York, N.Y.) N.Y.), 2005-06, Vol.111 (22), p.2966-2972 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nitric oxide (NO) production is increased in postischemic myocardium, and NO can control mitochondrial oxygen consumption in vitro. Therefore, we investigated the role of endothelial NO synthase (eNOS)-derived NO on in vivo regulation of oxygen consumption in the postischemic heart.
Mice were subjected to 30 minutes of coronary ligation followed by 60 minutes of reperfusion. Myocardial oxygen tension (Po2) was monitored by electron paramagnetic resonance oximetry. In wild-type, N-nitro-L-arginine methyl ester (L-NAME)-treated (with 1 mg/mL in drinking water), and eNOS knockout (eNOS-/-) mice, no difference was observed among baseline myocardial Po2 values (8.6+/-0.7, 10.0+/-1.2, and 10.1+/-1.2 mm Hg, respectively) or those measured at 30 minutes of ischemia (1.4+/-0.6, 2.3+/-0.9, and 3.1+/-1.4 mm Hg, respectively). After reperfusion, myocardial Po2 increased markedly (P |
---|---|
ISSN: | 0009-7322 1524-4539 |
DOI: | 10.1161/circulationaha.104.527226 |