Loading…
Monte Carlo and Modified Tanford−Kirkwood Results for Macromolecular Electrostatics Calculations
The understanding of electrostatic interactions is an essential aspect of the complex correlation between structure and function of biological macromolecules. It is also important in protein engineering and design. Theoretical studies of such interactions are predominantly done within the framework...
Saved in:
Published in: | The journal of physical chemistry. B 2006-05, Vol.110 (17), p.8832-8839 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The understanding of electrostatic interactions is an essential aspect of the complex correlation between structure and function of biological macromolecules. It is also important in protein engineering and design. Theoretical studies of such interactions are predominantly done within the framework of Debye−Hückel theory. A classical example is the Tanford−Kirkwood (TK) model. Besides other limitations, this model assumes an infinitesimally small macromolecule concentration. By comparison to Monte Carlo (MC) simulations, it is shown that TK predictions for the shifts in ion binding constants upon addition of salt become less reliable even at moderately macromolecular concentrations. A simple modification based on colloidal literature is suggested to the TK scheme. The modified TK models suggested here satisfactorily predict MC and experimental shifts in the calcium binding constant as a function of protein concentration for the calbindin D9k mutant and calmodulin. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/jp054891e |