Loading…
Recombinant p21 Protein Inhibits Lymphocyte Proliferation and Transcription Factors
Cellular proliferation determines the events leading to the initiation and development of inflammation, immune activation, cancer, atherogenesis, and other disorders associated with aberrant cell proliferation. Cyclin inhibitor p21 plays a unique role in limiting cell cycle progression. However, its...
Saved in:
Published in: | The Journal of immunology (1950) 2005-06, Vol.174 (12), p.7610-7617 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cellular proliferation determines the events leading to the initiation and development of inflammation, immune activation, cancer, atherogenesis, and other disorders associated with aberrant cell proliferation. Cyclin inhibitor p21 plays a unique role in limiting cell cycle progression. However, its effectiveness can only be demonstrated with direct in vitro and in vivo delivery to control aberrant proliferation. We demonstrate that using a protein-transducing domain p21 protein a) localizes within the nuclear compartments of cells, b) interacts with transcription factors, NF-kappaB, and NFATs (NFATc and NFATp), and c) inhibits lymphocyte proliferation and expression of proinflammatory cytokines. This study using lymphocyte proliferation as a model suggests that the recombinant p21 protein can directly be delivered as a therapeutic protein to provide a novel, viable, and powerful strategy to limit proliferation, inflammation, alloimmune activation, cancer, and vascular proliferative disorders such as atherosclerosis. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.174.12.7610 |