Loading…

An effervescent reaction micropump for portable microfluidic systems

A water-activated, effervescent reaction was used to transport fluid in a controllable manner on a portable microfluidic device. The reaction between sodium bicarbonate and an organic acid, tartaric acid and/or benzoic acid, was modeled to analyze methods of controlling the generation of carbon-diox...

Full description

Saved in:
Bibliographic Details
Published in:Lab on a chip 2006-01, Vol.6 (5), p.659-666
Main Authors: Good, Brian T, Bowman, Christopher N, Davis, Robert H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A water-activated, effervescent reaction was used to transport fluid in a controllable manner on a portable microfluidic device. The reaction between sodium bicarbonate and an organic acid, tartaric acid and/or benzoic acid, was modeled to analyze methods of controlling the generation of carbon-dioxide gas for the purposes of pumping fluids. Integration and testing of the effervescent reaction pump in a microfluidic device was made possible by using elastomeric polymers as both photopolymerizable septa and removable lids. These materials combined to enable facile access to otherwise gas-tight devices. Based on theoretical predictions for 0.33 mg of sodium bicarbonate and a stoichiometric amount of organic acid, the pumping flow rate could be varied from 0.01 microL s(-1) to 70 microL s(-1). The flow rate is controlled by adjusting any or all of the particle size of the least soluble reactant, the amount of reactants used, and the type of organic acid selected. The tartaric acid systems rapidly produce carbon dioxide; however, the gas generation rates dramatically decrease over the course of the reaction. In contrast, carbon dioxide production rate in the benzoic acid systems is lower and nearly constant for several minutes. Water activation and direct placement on a microfluidic device are key features of this micropump, which is therefore useful for portable microfluidic applications.
ISSN:1473-0197
1473-0189
DOI:10.1039/b601542e