Loading…

Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing

The design and fabrication of a multilayered polymer micro-nanofluidic chip is described that consists of poly(methylmethacrylate) (PMMA) layers that contain microfluidic channels separated in the vertical direction by polycarbonate (PC) membranes that incorporate an array of nanometre diameter cyli...

Full description

Saved in:
Bibliographic Details
Published in:Lab on a chip 2006-01, Vol.6 (5), p.667-674
Main Authors: Flachsbart, Bruce R, Wong, Kachuen, Iannacone, Jamie M, Abante, Edward N, Vlach, Robert L, Rauchfuss, Peter A, Bohn, Paul W, Sweedler, Jonathan V, Shannon, Mark A
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c318t-78b8e6e2d2f7ae99f97b480f1fc0339be62313fec11206940a08576ea347a7003
cites cdi_FETCH-LOGICAL-c318t-78b8e6e2d2f7ae99f97b480f1fc0339be62313fec11206940a08576ea347a7003
container_end_page 674
container_issue 5
container_start_page 667
container_title Lab on a chip
container_volume 6
creator Flachsbart, Bruce R
Wong, Kachuen
Iannacone, Jamie M
Abante, Edward N
Vlach, Robert L
Rauchfuss, Peter A
Bohn, Paul W
Sweedler, Jonathan V
Shannon, Mark A
description The design and fabrication of a multilayered polymer micro-nanofluidic chip is described that consists of poly(methylmethacrylate) (PMMA) layers that contain microfluidic channels separated in the vertical direction by polycarbonate (PC) membranes that incorporate an array of nanometre diameter cylindrical pores. The materials are optically transparent to allow inspection of the fluids within the channels in the near UV and visible spectrum. The design architecture enables nanofluidic interconnections to be placed in the vertical direction between microfluidic channels. Such an architecture allows microchannel separations within the chip, as well as allowing unique operations that utilize nanocapillary interconnects: the separation of analytes based on molecular size, channel isolation, enhanced mixing, and sample concentration. Device fabrication is made possible by a transfer process of labile membranes and the development of a contact printing method for a thermally curable epoxy based adhesive. This adhesive is shown to have bond strengths that prevent leakage and delamination and channel rupture tests exceed 6 atm (0.6 MPa) under applied pressure. Channels 100 microm in width and 20 microm in depth are contact printed without the adhesive entering the microchannel. The chip is characterized in terms of resistivity measurements along the microfluidic channels, electroosmotic flow (EOF) measurements at different pH values and laser-induced-fluorescence (LIF) detection of green-fluorescent protein (GFP) plugs injected across the nanocapillary membrane and into a microfluidic channel. The results indicate that the mixed polymer micro-nanofluidic multilayer chip has electrical characteristics needed for use in microanalytical systems.
doi_str_mv 10.1039/b514300d
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67924719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67924719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-78b8e6e2d2f7ae99f97b480f1fc0339be62313fec11206940a08576ea347a7003</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhC0EoqUg8QuQT4hLwI4TP46oPKVKXOAcOc66NUqcYjtFPfHXCWqB065Gn2Z3BqFzSq4pYeqmLmnBCGkO0JQWgmWESnX4tysxQScxvhNCy4LLYzShnJc5lWyKvu4guqXH2jfY6jo4o5PrPe4t1rgb2uRavYUADV737baDgDtnQm_bwTXOYLNya_zp0gp77f9U5xME03sPJkW8cRrrZjXe2QAe1aRNwuswQs4vT9GR1W2Es_2cobeH-9f5U7Z4eXye3y4yw6hMmZC1BA55k1uhQSmrRF1IYqk1hDFVA88ZZRYMpTnhqiCayFJw0KwQWhDCZuhy57sO_ccAMVWdiwbaVnvoh1hxofJCUDWCVztwTBljAFuNr3Y6bCtKqp-yq9-yR_Ri7znUHTT_4L5d9g234Xwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67924719</pqid></control><display><type>article</type><title>Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing</title><source>Royal Society of Chemistry: Jisc Collections: Journals Archive 1841-2007 (2019-2023)</source><creator>Flachsbart, Bruce R ; Wong, Kachuen ; Iannacone, Jamie M ; Abante, Edward N ; Vlach, Robert L ; Rauchfuss, Peter A ; Bohn, Paul W ; Sweedler, Jonathan V ; Shannon, Mark A</creator><creatorcontrib>Flachsbart, Bruce R ; Wong, Kachuen ; Iannacone, Jamie M ; Abante, Edward N ; Vlach, Robert L ; Rauchfuss, Peter A ; Bohn, Paul W ; Sweedler, Jonathan V ; Shannon, Mark A</creatorcontrib><description>The design and fabrication of a multilayered polymer micro-nanofluidic chip is described that consists of poly(methylmethacrylate) (PMMA) layers that contain microfluidic channels separated in the vertical direction by polycarbonate (PC) membranes that incorporate an array of nanometre diameter cylindrical pores. The materials are optically transparent to allow inspection of the fluids within the channels in the near UV and visible spectrum. The design architecture enables nanofluidic interconnections to be placed in the vertical direction between microfluidic channels. Such an architecture allows microchannel separations within the chip, as well as allowing unique operations that utilize nanocapillary interconnects: the separation of analytes based on molecular size, channel isolation, enhanced mixing, and sample concentration. Device fabrication is made possible by a transfer process of labile membranes and the development of a contact printing method for a thermally curable epoxy based adhesive. This adhesive is shown to have bond strengths that prevent leakage and delamination and channel rupture tests exceed 6 atm (0.6 MPa) under applied pressure. Channels 100 microm in width and 20 microm in depth are contact printed without the adhesive entering the microchannel. The chip is characterized in terms of resistivity measurements along the microfluidic channels, electroosmotic flow (EOF) measurements at different pH values and laser-induced-fluorescence (LIF) detection of green-fluorescent protein (GFP) plugs injected across the nanocapillary membrane and into a microfluidic channel. The results indicate that the mixed polymer micro-nanofluidic multilayer chip has electrical characteristics needed for use in microanalytical systems.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/b514300d</identifier><identifier>PMID: 16652183</identifier><language>eng</language><publisher>England</publisher><ispartof>Lab on a chip, 2006-01, Vol.6 (5), p.667-674</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-78b8e6e2d2f7ae99f97b480f1fc0339be62313fec11206940a08576ea347a7003</citedby><cites>FETCH-LOGICAL-c318t-78b8e6e2d2f7ae99f97b480f1fc0339be62313fec11206940a08576ea347a7003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16652183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Flachsbart, Bruce R</creatorcontrib><creatorcontrib>Wong, Kachuen</creatorcontrib><creatorcontrib>Iannacone, Jamie M</creatorcontrib><creatorcontrib>Abante, Edward N</creatorcontrib><creatorcontrib>Vlach, Robert L</creatorcontrib><creatorcontrib>Rauchfuss, Peter A</creatorcontrib><creatorcontrib>Bohn, Paul W</creatorcontrib><creatorcontrib>Sweedler, Jonathan V</creatorcontrib><creatorcontrib>Shannon, Mark A</creatorcontrib><title>Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>The design and fabrication of a multilayered polymer micro-nanofluidic chip is described that consists of poly(methylmethacrylate) (PMMA) layers that contain microfluidic channels separated in the vertical direction by polycarbonate (PC) membranes that incorporate an array of nanometre diameter cylindrical pores. The materials are optically transparent to allow inspection of the fluids within the channels in the near UV and visible spectrum. The design architecture enables nanofluidic interconnections to be placed in the vertical direction between microfluidic channels. Such an architecture allows microchannel separations within the chip, as well as allowing unique operations that utilize nanocapillary interconnects: the separation of analytes based on molecular size, channel isolation, enhanced mixing, and sample concentration. Device fabrication is made possible by a transfer process of labile membranes and the development of a contact printing method for a thermally curable epoxy based adhesive. This adhesive is shown to have bond strengths that prevent leakage and delamination and channel rupture tests exceed 6 atm (0.6 MPa) under applied pressure. Channels 100 microm in width and 20 microm in depth are contact printed without the adhesive entering the microchannel. The chip is characterized in terms of resistivity measurements along the microfluidic channels, electroosmotic flow (EOF) measurements at different pH values and laser-induced-fluorescence (LIF) detection of green-fluorescent protein (GFP) plugs injected across the nanocapillary membrane and into a microfluidic channel. The results indicate that the mixed polymer micro-nanofluidic multilayer chip has electrical characteristics needed for use in microanalytical systems.</description><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkEtPwzAQhC0EoqUg8QuQT4hLwI4TP46oPKVKXOAcOc66NUqcYjtFPfHXCWqB065Gn2Z3BqFzSq4pYeqmLmnBCGkO0JQWgmWESnX4tysxQScxvhNCy4LLYzShnJc5lWyKvu4guqXH2jfY6jo4o5PrPe4t1rgb2uRavYUADV737baDgDtnQm_bwTXOYLNya_zp0gp77f9U5xME03sPJkW8cRrrZjXe2QAe1aRNwuswQs4vT9GR1W2Es_2cobeH-9f5U7Z4eXye3y4yw6hMmZC1BA55k1uhQSmrRF1IYqk1hDFVA88ZZRYMpTnhqiCayFJw0KwQWhDCZuhy57sO_ccAMVWdiwbaVnvoh1hxofJCUDWCVztwTBljAFuNr3Y6bCtKqp-yq9-yR_Ri7znUHTT_4L5d9g234Xwg</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Flachsbart, Bruce R</creator><creator>Wong, Kachuen</creator><creator>Iannacone, Jamie M</creator><creator>Abante, Edward N</creator><creator>Vlach, Robert L</creator><creator>Rauchfuss, Peter A</creator><creator>Bohn, Paul W</creator><creator>Sweedler, Jonathan V</creator><creator>Shannon, Mark A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060101</creationdate><title>Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing</title><author>Flachsbart, Bruce R ; Wong, Kachuen ; Iannacone, Jamie M ; Abante, Edward N ; Vlach, Robert L ; Rauchfuss, Peter A ; Bohn, Paul W ; Sweedler, Jonathan V ; Shannon, Mark A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-78b8e6e2d2f7ae99f97b480f1fc0339be62313fec11206940a08576ea347a7003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flachsbart, Bruce R</creatorcontrib><creatorcontrib>Wong, Kachuen</creatorcontrib><creatorcontrib>Iannacone, Jamie M</creatorcontrib><creatorcontrib>Abante, Edward N</creatorcontrib><creatorcontrib>Vlach, Robert L</creatorcontrib><creatorcontrib>Rauchfuss, Peter A</creatorcontrib><creatorcontrib>Bohn, Paul W</creatorcontrib><creatorcontrib>Sweedler, Jonathan V</creatorcontrib><creatorcontrib>Shannon, Mark A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flachsbart, Bruce R</au><au>Wong, Kachuen</au><au>Iannacone, Jamie M</au><au>Abante, Edward N</au><au>Vlach, Robert L</au><au>Rauchfuss, Peter A</au><au>Bohn, Paul W</au><au>Sweedler, Jonathan V</au><au>Shannon, Mark A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2006-01-01</date><risdate>2006</risdate><volume>6</volume><issue>5</issue><spage>667</spage><epage>674</epage><pages>667-674</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>The design and fabrication of a multilayered polymer micro-nanofluidic chip is described that consists of poly(methylmethacrylate) (PMMA) layers that contain microfluidic channels separated in the vertical direction by polycarbonate (PC) membranes that incorporate an array of nanometre diameter cylindrical pores. The materials are optically transparent to allow inspection of the fluids within the channels in the near UV and visible spectrum. The design architecture enables nanofluidic interconnections to be placed in the vertical direction between microfluidic channels. Such an architecture allows microchannel separations within the chip, as well as allowing unique operations that utilize nanocapillary interconnects: the separation of analytes based on molecular size, channel isolation, enhanced mixing, and sample concentration. Device fabrication is made possible by a transfer process of labile membranes and the development of a contact printing method for a thermally curable epoxy based adhesive. This adhesive is shown to have bond strengths that prevent leakage and delamination and channel rupture tests exceed 6 atm (0.6 MPa) under applied pressure. Channels 100 microm in width and 20 microm in depth are contact printed without the adhesive entering the microchannel. The chip is characterized in terms of resistivity measurements along the microfluidic channels, electroosmotic flow (EOF) measurements at different pH values and laser-induced-fluorescence (LIF) detection of green-fluorescent protein (GFP) plugs injected across the nanocapillary membrane and into a microfluidic channel. The results indicate that the mixed polymer micro-nanofluidic multilayer chip has electrical characteristics needed for use in microanalytical systems.</abstract><cop>England</cop><pmid>16652183</pmid><doi>10.1039/b514300d</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2006-01, Vol.6 (5), p.667-674
issn 1473-0197
1473-0189
language eng
recordid cdi_proquest_miscellaneous_67924719
source Royal Society of Chemistry: Jisc Collections: Journals Archive 1841-2007 (2019-2023)
title Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A39%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20fabrication%20of%20a%20multilayered%20polymer%20microfluidic%20chip%20with%20nanofluidic%20interconnects%20via%20adhesive%20contact%20printing&rft.jtitle=Lab%20on%20a%20chip&rft.au=Flachsbart,%20Bruce%20R&rft.date=2006-01-01&rft.volume=6&rft.issue=5&rft.spage=667&rft.epage=674&rft.pages=667-674&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/b514300d&rft_dat=%3Cproquest_cross%3E67924719%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-78b8e6e2d2f7ae99f97b480f1fc0339be62313fec11206940a08576ea347a7003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67924719&rft_id=info:pmid/16652183&rfr_iscdi=true