Loading…
Extracting and visualizing physiological parameters using dynamic contrast-enhanced magnetic resonance imaging of the breast
An analysis procedure is presented that enables the acquisition and visualization of physiologically relevant parameters using dynamic contrast-enhanced magnetic resonance imaging. The first stage of the process involves the use of a signal model that relates the measured magnetic resonance signal t...
Saved in:
Published in: | Medical image analysis 2005-08, Vol.9 (4), p.315-329 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-c75350c8564df51e8a86a37c84618bac84e967f5c5124760f9afda5898a0cb0b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-c75350c8564df51e8a86a37c84618bac84e967f5c5124760f9afda5898a0cb0b3 |
container_end_page | 329 |
container_issue | 4 |
container_start_page | 315 |
container_title | Medical image analysis |
container_volume | 9 |
creator | Armitage, Paul Behrenbruch, Christian Brady, Michael Moore, Niall |
description | An analysis procedure is presented that enables the acquisition and visualization of physiologically relevant parameters using dynamic contrast-enhanced magnetic resonance imaging. The first stage of the process involves the use of a signal model that relates the measured magnetic resonance signal to the contrast agent concentration. Since the model requires knowledge of the longitudinal relaxation time
T
1, a novel optimization scheme is presented which ensures a reliable measurement. Pharmacokinetic modelling of the observed contrast agent uptake is then performed to obtain physiological parameters relating to microvessel leakage permeability and volume fraction and the assumptions made in the derivation of these parameters are discussed. A simple colour representation is utilized that enables the relevant physiological information to be conveyed to the clinician in a visually efficient and meaningful manner. A second representation, based on vector maps, is also devised and it is demonstrated how this can be used for malignant tumour segmentation. Finally, the procedure is applied to 14 pre- and post-chemotherapy breast cases to demonstrate the clinical value of the technique. In particular, the apparent improved representation of tissue vascularity when compared to conventional methods and the implications for this in treatment assessment are discussed. |
doi_str_mv | 10.1016/j.media.2005.01.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67925388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841505000113</els_id><sourcerecordid>67925388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-c75350c8564df51e8a86a37c84618bac84e967f5c5124760f9afda5898a0cb0b3</originalsourceid><addsrcrecordid>eNqFUTuP1DAQjhCIOw5-ARJyRZcwTmLHKSjQ6XhIJ9FAbU2cya5Xib3YzolF_HgcdgUdVGPP9xjNfEXxkkPFgcs3h2qh0WJVA4gKeAXAHxXXvJG8VG3dPP7z5uKqeBbjAQC6toWnxRUXvQDVi-vi5933FNAk63YM3cgebFxxtj-2_3F_itbPfmcNzuyIARdKFCJb4waPJ4eLNcx4ly1iKsnt0Rka2YI7RylDgaJ3W4_Z3NtEfmJpT2wIlBXPiycTzpFeXOpN8fX93Zfbj-X95w-fbt_dl6ZRKpWmE40Ao4Rsx0lwUqgkNp1RreRqwFypl90kjOB120mYepxGFKpXCGaAobkpXp99j8F_WykmvdhoaJ7RkV-jll1fizzqv0TeNVLVvcjE5kw0wccYaNLHkFcMJ81Bb-nog_6djt7S0cB1TierXl3s1yGjfzWXODLh7ZlA-RoPloKOxtJ2UxvIJD16-88BvwD68qRW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17368295</pqid></control><display><type>article</type><title>Extracting and visualizing physiological parameters using dynamic contrast-enhanced magnetic resonance imaging of the breast</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Armitage, Paul ; Behrenbruch, Christian ; Brady, Michael ; Moore, Niall</creator><creatorcontrib>Armitage, Paul ; Behrenbruch, Christian ; Brady, Michael ; Moore, Niall</creatorcontrib><description>An analysis procedure is presented that enables the acquisition and visualization of physiologically relevant parameters using dynamic contrast-enhanced magnetic resonance imaging. The first stage of the process involves the use of a signal model that relates the measured magnetic resonance signal to the contrast agent concentration. Since the model requires knowledge of the longitudinal relaxation time
T
1, a novel optimization scheme is presented which ensures a reliable measurement. Pharmacokinetic modelling of the observed contrast agent uptake is then performed to obtain physiological parameters relating to microvessel leakage permeability and volume fraction and the assumptions made in the derivation of these parameters are discussed. A simple colour representation is utilized that enables the relevant physiological information to be conveyed to the clinician in a visually efficient and meaningful manner. A second representation, based on vector maps, is also devised and it is demonstrated how this can be used for malignant tumour segmentation. Finally, the procedure is applied to 14 pre- and post-chemotherapy breast cases to demonstrate the clinical value of the technique. In particular, the apparent improved representation of tissue vascularity when compared to conventional methods and the implications for this in treatment assessment are discussed.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2005.01.001</identifier><identifier>PMID: 15950895</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Area Under Curve ; Bayes Theorem ; Breast cancer ; Breast Neoplasms - drug therapy ; Breast Neoplasms - pathology ; Chemotherapy assessment ; Contrast Media - pharmacokinetics ; Diagnosis, Differential ; Female ; Humans ; Image Processing, Computer-Assisted - methods ; Imaging, Three-Dimensional ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Phantoms, Imaging ; Pharmacokinetic modelling</subject><ispartof>Medical image analysis, 2005-08, Vol.9 (4), p.315-329</ispartof><rights>2005 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-c75350c8564df51e8a86a37c84618bac84e967f5c5124760f9afda5898a0cb0b3</citedby><cites>FETCH-LOGICAL-c388t-c75350c8564df51e8a86a37c84618bac84e967f5c5124760f9afda5898a0cb0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15950895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Armitage, Paul</creatorcontrib><creatorcontrib>Behrenbruch, Christian</creatorcontrib><creatorcontrib>Brady, Michael</creatorcontrib><creatorcontrib>Moore, Niall</creatorcontrib><title>Extracting and visualizing physiological parameters using dynamic contrast-enhanced magnetic resonance imaging of the breast</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>An analysis procedure is presented that enables the acquisition and visualization of physiologically relevant parameters using dynamic contrast-enhanced magnetic resonance imaging. The first stage of the process involves the use of a signal model that relates the measured magnetic resonance signal to the contrast agent concentration. Since the model requires knowledge of the longitudinal relaxation time
T
1, a novel optimization scheme is presented which ensures a reliable measurement. Pharmacokinetic modelling of the observed contrast agent uptake is then performed to obtain physiological parameters relating to microvessel leakage permeability and volume fraction and the assumptions made in the derivation of these parameters are discussed. A simple colour representation is utilized that enables the relevant physiological information to be conveyed to the clinician in a visually efficient and meaningful manner. A second representation, based on vector maps, is also devised and it is demonstrated how this can be used for malignant tumour segmentation. Finally, the procedure is applied to 14 pre- and post-chemotherapy breast cases to demonstrate the clinical value of the technique. In particular, the apparent improved representation of tissue vascularity when compared to conventional methods and the implications for this in treatment assessment are discussed.</description><subject>Algorithms</subject><subject>Area Under Curve</subject><subject>Bayes Theorem</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Breast Neoplasms - pathology</subject><subject>Chemotherapy assessment</subject><subject>Contrast Media - pharmacokinetics</subject><subject>Diagnosis, Differential</subject><subject>Female</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Phantoms, Imaging</subject><subject>Pharmacokinetic modelling</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFUTuP1DAQjhCIOw5-ARJyRZcwTmLHKSjQ6XhIJ9FAbU2cya5Xib3YzolF_HgcdgUdVGPP9xjNfEXxkkPFgcs3h2qh0WJVA4gKeAXAHxXXvJG8VG3dPP7z5uKqeBbjAQC6toWnxRUXvQDVi-vi5933FNAk63YM3cgebFxxtj-2_3F_itbPfmcNzuyIARdKFCJb4waPJ4eLNcx4ly1iKsnt0Rka2YI7RylDgaJ3W4_Z3NtEfmJpT2wIlBXPiycTzpFeXOpN8fX93Zfbj-X95w-fbt_dl6ZRKpWmE40Ao4Rsx0lwUqgkNp1RreRqwFypl90kjOB120mYepxGFKpXCGaAobkpXp99j8F_WykmvdhoaJ7RkV-jll1fizzqv0TeNVLVvcjE5kw0wccYaNLHkFcMJ81Bb-nog_6djt7S0cB1TierXl3s1yGjfzWXODLh7ZlA-RoPloKOxtJ2UxvIJD16-88BvwD68qRW</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Armitage, Paul</creator><creator>Behrenbruch, Christian</creator><creator>Brady, Michael</creator><creator>Moore, Niall</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20050801</creationdate><title>Extracting and visualizing physiological parameters using dynamic contrast-enhanced magnetic resonance imaging of the breast</title><author>Armitage, Paul ; Behrenbruch, Christian ; Brady, Michael ; Moore, Niall</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-c75350c8564df51e8a86a37c84618bac84e967f5c5124760f9afda5898a0cb0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Area Under Curve</topic><topic>Bayes Theorem</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Breast Neoplasms - pathology</topic><topic>Chemotherapy assessment</topic><topic>Contrast Media - pharmacokinetics</topic><topic>Diagnosis, Differential</topic><topic>Female</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Phantoms, Imaging</topic><topic>Pharmacokinetic modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armitage, Paul</creatorcontrib><creatorcontrib>Behrenbruch, Christian</creatorcontrib><creatorcontrib>Brady, Michael</creatorcontrib><creatorcontrib>Moore, Niall</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armitage, Paul</au><au>Behrenbruch, Christian</au><au>Brady, Michael</au><au>Moore, Niall</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting and visualizing physiological parameters using dynamic contrast-enhanced magnetic resonance imaging of the breast</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2005-08-01</date><risdate>2005</risdate><volume>9</volume><issue>4</issue><spage>315</spage><epage>329</epage><pages>315-329</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>An analysis procedure is presented that enables the acquisition and visualization of physiologically relevant parameters using dynamic contrast-enhanced magnetic resonance imaging. The first stage of the process involves the use of a signal model that relates the measured magnetic resonance signal to the contrast agent concentration. Since the model requires knowledge of the longitudinal relaxation time
T
1, a novel optimization scheme is presented which ensures a reliable measurement. Pharmacokinetic modelling of the observed contrast agent uptake is then performed to obtain physiological parameters relating to microvessel leakage permeability and volume fraction and the assumptions made in the derivation of these parameters are discussed. A simple colour representation is utilized that enables the relevant physiological information to be conveyed to the clinician in a visually efficient and meaningful manner. A second representation, based on vector maps, is also devised and it is demonstrated how this can be used for malignant tumour segmentation. Finally, the procedure is applied to 14 pre- and post-chemotherapy breast cases to demonstrate the clinical value of the technique. In particular, the apparent improved representation of tissue vascularity when compared to conventional methods and the implications for this in treatment assessment are discussed.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>15950895</pmid><doi>10.1016/j.media.2005.01.001</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-8415 |
ispartof | Medical image analysis, 2005-08, Vol.9 (4), p.315-329 |
issn | 1361-8415 1361-8423 |
language | eng |
recordid | cdi_proquest_miscellaneous_67925388 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Algorithms Area Under Curve Bayes Theorem Breast cancer Breast Neoplasms - drug therapy Breast Neoplasms - pathology Chemotherapy assessment Contrast Media - pharmacokinetics Diagnosis, Differential Female Humans Image Processing, Computer-Assisted - methods Imaging, Three-Dimensional Magnetic resonance imaging Magnetic Resonance Imaging - methods Phantoms, Imaging Pharmacokinetic modelling |
title | Extracting and visualizing physiological parameters using dynamic contrast-enhanced magnetic resonance imaging of the breast |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A44%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20and%20visualizing%20physiological%20parameters%20using%20dynamic%20contrast-enhanced%20magnetic%20resonance%20imaging%20of%20the%20breast&rft.jtitle=Medical%20image%20analysis&rft.au=Armitage,%20Paul&rft.date=2005-08-01&rft.volume=9&rft.issue=4&rft.spage=315&rft.epage=329&rft.pages=315-329&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2005.01.001&rft_dat=%3Cproquest_cross%3E67925388%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-c75350c8564df51e8a86a37c84618bac84e967f5c5124760f9afda5898a0cb0b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17368295&rft_id=info:pmid/15950895&rfr_iscdi=true |