Loading…

Soft tissue strain energy minimization: a candidate control scheme for intra-finger normal–tangential force coordination

The safety margin (SM) measure has been used to quantify the phenomenon that humans grasp objects more firmly than is necessary to prevent slip. The biomechanical basis for the SM phenomenon is addressed herein. A hypothesis is proposed regarding intra-finger normal–tangential force coordination. Th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanics 2005-08, Vol.38 (8), p.1723-1727
Main Author: Pataky, Todd C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The safety margin (SM) measure has been used to quantify the phenomenon that humans grasp objects more firmly than is necessary to prevent slip. The biomechanical basis for the SM phenomenon is addressed herein. A hypothesis is proposed regarding intra-finger normal–tangential force coordination. The idea is that the central nervous system (CNS) minimizes the strain energy of the soft finger pad tissue by varying normal force when presented with a certain tangential force. This control scheme requires no knowledge of the frictional conditions at the finger–object interface; the CNS needs only to detect the strain energy in the contact region, an area abundant with strain-sensitive mechanoreceptors. The scheme is not independent, but is rather a possible component of a more complicated system. The strain energy minimization problem was solved using the finite element model (FEM) of Wu et al. (Med. Eng. Phys. 24(4)(2002) 253). Optimization results revealed that the suggested control scheme produced SM values of 30-50%, corresponding closely to those reported experimentally. Slip prevention naturally emerges from the control scheme provided that the friction coefficient exceeds 0.7, a value lower than typically encountered.
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2004.07.020