Loading…
Nano-Electrochemical Detection of Hydrogen or Protons Using Palladium Nanoparticles: Distinguishing Surface and Bulk Hydrogen
The benefits of using nanoparticle‐modified electrodes are exemplified through the electrochemical detection of protons and/or hydrogen. It is shown that a palladium‐nanoparticle‐modified boron‐doped diamond allows voltammetric information relating to the relative roles played by the surface and the...
Saved in:
Published in: | Chemphyschem 2006-05, Vol.7 (5), p.1081-1085 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The benefits of using nanoparticle‐modified electrodes are exemplified through the electrochemical detection of protons and/or hydrogen. It is shown that a palladium‐nanoparticle‐modified boron‐doped diamond allows voltammetric information relating to the relative roles played by the surface and the bulk metal to be obtained for the proton–hydrogen system at palladium surfaces which is not accessible using palladium macroelectrodes or microelectrodes.
A deeper insight into the Pd/H2/H+ system: The electrochemical response of a palladium‐nanoparticle‐modified boron‐doped diamond (BDD) electrode for the electrochemical detection of protons and/or hydrogen (see cyclic voltammogram for the reduction of PdCl2 in H2SO4 at a BDD electrode) is explored. The roles played by the surface‐ and bulk‐absorbed hydrogen, which cannot be observed at palladium macro‐ or microelectrodes, are identified. |
---|---|
ISSN: | 1439-4235 1439-7641 |
DOI: | 10.1002/cphc.200500571 |