Loading…
Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors
Metastatic tumors generally exhibit aerobic glycolysis (the Warburg effect). The advent of [18F]fluorodeoxyglucose positron emission tomography imaging, coupled with recent findings linking hypoxia-inducible factor (HIF-1alpha) overexpression to aggressive cancers, has rekindled an interest in this...
Saved in:
Published in: | Neoplasia (New York, N.Y.) N.Y.), 2005-04, Vol.7 (4), p.324-330 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Metastatic tumors generally exhibit aerobic glycolysis (the Warburg effect). The advent of [18F]fluorodeoxyglucose positron emission tomography imaging, coupled with recent findings linking hypoxia-inducible factor (HIF-1alpha) overexpression to aggressive cancers, has rekindled an interest in this aspect of tumor metabolism. These studies explore the role of HIF-1alpha in human breast cancer lines and its relationship to glycolytic regulation. Here we demonstrate that, under normal oxygen conditions, nonmetastatic cells consume less glucose and express low HIF-1alpha, whereas metastatic cells constitutively express high glycolysis and HIF-1alpha, suggesting that dysregulation of HIF-1alpha may induce the Warburg effect. This hypothesis was tested by renormalizing HIF-1alpha levels in renal carcinoma cells, leading to inhibition of aerobic glycolysis. |
---|---|
ISSN: | 1522-8002 |