Loading…

Multilevel IRT using dichotomous and polytomous response data

A structural multilevel model is presented where some of the variables cannot be observed directly but are measured using tests or questionnaires. Observed dichotomous or ordinal polytomous response data serve to measure the latent variables using an item response theory model. The latent variables...

Full description

Saved in:
Bibliographic Details
Published in:British journal of mathematical & statistical psychology 2005-05, Vol.58 (1), p.145-172
Main Author: Fox, J. -P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A structural multilevel model is presented where some of the variables cannot be observed directly but are measured using tests or questionnaires. Observed dichotomous or ordinal polytomous response data serve to measure the latent variables using an item response theory model. The latent variables can be defined at any level of the multilevel model. A Bayesian procedure Markov chain Monte Carlo (MCMC), to estimate all parameters simultaneously is presented. It is shown that certain model checks and model comparisons can be done using the MCMC output. The techniques are illustrated using a simulation study and an application involving students' achievements on a mathematics test and test results regarding management characteristics of teachers and principles.
ISSN:0007-1102
2044-8317
DOI:10.1348/000711005X38951