Loading…
Linked Foreign T-Cell Help Activates Self-Reactive CTL and Inhibits Tumor Growth
Transgenic mice expressing membrane-bound OVA under the rat insulin promoter, RIP-mOVA, has previously been suggested to display deletional tolerance toward the dominant CTL epitope, SIINFEKL, and provide an elegant model system to test the hypothesis that the lack of T cell help contributes to the...
Saved in:
Published in: | The Journal of immunology (1950) 2005-07, Vol.175 (1), p.329-334 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transgenic mice expressing membrane-bound OVA under the rat insulin promoter, RIP-mOVA, has previously been suggested to display deletional tolerance toward the dominant CTL epitope, SIINFEKL, and provide an elegant model system to test the hypothesis that the lack of T cell help contributes to the tolerance. To understand how the CD8 tolerance is maintained in these mice, a set of neo-self-Ags, OVA, modified to contain a foreign Th peptide, were constructed and tested for their ability to induce CTL responses in RIP-mOVA mice. Immunization with these Th peptide-modified OVA molecules and not with the wild-type OVA induced self-reactive CTLs recognizing dominant CTL peptide, SIINFEKL. Importantly, immunization with the modified OVA constructs also prevented the growth of OVA-expressing tumors in transgenic mice. Since endogenous OVA Th peptides did not contribute toward breaking self CTL tolerance, these results also highlighted a very robust CD4 T cell tolerance toward OVA in RIP-mOVA mice that has not been previously described. These results therefore provide direct evidence that it is the tolerance in the CD4 Th cell compartment that helps maintain the CTL tolerance against self-Ag in these mice. Since the CTL tolerance can be broken or bypassed by foreign Th peptides inserted into a self Ag, potential of using this approach in generating effective therapeutic cancer vaccines is discussed. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.175.1.329 |