Loading…
Epigallocatechin-3-gallate, a green-tea polyphenol, suppresses Rho signaling in TWNT-4 human hepatic stellate cells
Epigallocatechin-3-gallate (EGCG), a major constituent of the polyphenoids in green tea, has been reported to possess a wide range of biologic activities, including antifibrogenesis. Activated hepatic stellate cells (HSCs) are central to hepatic fibrosis, and Rho (a small GTPase)-signaling pathways...
Saved in:
Published in: | The Journal of laboratory and clinical medicine 2005-06, Vol.145 (6), p.316-322 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Epigallocatechin-3-gallate (EGCG), a major constituent of the polyphenoids in green tea, has been reported to possess a wide range of biologic activities, including antifibrogenesis. Activated hepatic stellate cells (HSCs) are central to hepatic fibrosis, and Rho (a small GTPase)-signaling pathways have been implicated in the activation and proliferation of HSCs. In this study, we investigated the effect of EGCG on Rho-signaling pathways in activated human HSC-derived TWNT-4 cells. EGCG inhibited stress-fiber formation, an indicator of Rho activation, and changed the distribution of α-smooth-muscle actin. These inhibitory effects of EGCG were restored by overexpression of constitutively active Rho. A pull-down assay revealed that activated Rho (GTP-bound state) was strongly inhibited by ECGC and accompanied by suppressed phosphorylation of focal adhesion kinase, which is a regulator of Rho-signaling pathways. 5-Bromo-2′-deoxy-uridine incorporation demonstrated that ECGC (100 μmol/L suppressed cell growth by 80%, and terminal deoxynucleotidyl transferase viotin-deoxyruidine triphosphate nick end-labeling revealed that EGCG (100 μmol/L) caused apoptosis in half of the total cells. EGCG also strongly inhibited lysophoaphatidic acid (an activator of Rho) and induced phosphorylation of mitogen-activated protein kinases (Erk1/2, c-jun kinase, and p38). These findings demonstrate that EGCG regulates the structure and growth of HSCs by way of Rho-signaling pathways and suggest that EGCG has therapeutic potential in the setting of liver fibrosis. |
---|---|
ISSN: | 0022-2143 1532-6543 |
DOI: | 10.1016/j.lab.2005.03.017 |