Loading…

Permeation and gating in proteins: kinetic Monte Carlo reaction path following

We present a new Monte Carlo technique, kinetic Monte Carlo reaction path following (kMCRPF), for the computer simulation of permeation and large-scale gating transitions in protein channels. It combines ideas from Metropolis Monte Carlo (MMC) and kinetic Monte Carlo (kMC) algorithms, and is particu...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2005-06, Vol.122 (21), p.214901-214901
Main Authors: Miloshevsky, Gennady V, Jordan, Peter C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-37cbe6588f2b856a7abe569a4814bfc2c7637d0f4924dbc756e3641dffef69773
cites cdi_FETCH-LOGICAL-c316t-37cbe6588f2b856a7abe569a4814bfc2c7637d0f4924dbc756e3641dffef69773
container_end_page 214901
container_issue 21
container_start_page 214901
container_title The Journal of chemical physics
container_volume 122
creator Miloshevsky, Gennady V
Jordan, Peter C
description We present a new Monte Carlo technique, kinetic Monte Carlo reaction path following (kMCRPF), for the computer simulation of permeation and large-scale gating transitions in protein channels. It combines ideas from Metropolis Monte Carlo (MMC) and kinetic Monte Carlo (kMC) algorithms, and is particularly suitable when a reaction coordinate is well defined. Evolution of transition proceeds on the reaction coordinate by small jumps (kMC technique) toward the nearest lowest-energy uphill or downhill states, with the jumps thermally activated (constrained MMC). This approach permits navigation among potential minima on an energy surface, finding the minimum-energy paths and determining their associated free-energy profiles. The methodological and algorithmic strategies underlying the kMCRPF method are described. We have tested it using an analytical model and applied it to study permeation through the curvilinear ClC chloride and aquaporin pores and to gating in the gramicidin A channel. These studies of permeation and gating in real proteins provide extensive procedural tests of the method.
doi_str_mv 10.1063/1.1924501
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67971904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67971904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-37cbe6588f2b856a7abe569a4814bfc2c7637d0f4924dbc756e3641dffef69773</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EoqWw4AeQV0gsUjyJY8fsUFUeUnksYB05zrgEErvYqRB_T6CRWM0szr2aOYScApsDE9klzEGlPGewR6bACpVIodg-mTKWQqIEExNyFOM7Ywxkyg_JBHIluSz4lDw-Y-hQ9413VLuarofVrWnj6Cb4HhsXr-hH47BvDH3wrke60KH1NKA2f6GN7t-o9W3rv4bgMTmwuo14Ms4Zeb1ZvizuktXT7f3iepWYDESfZNJUKPKisGlV5EJLXWEulOYF8Mqa1EiRyZpZPrxVV0bmAjPBobYWrVBSZjNyvusdrvzcYuzLrokG21Y79NtYCqkkKMYH8GIHmuBjDGjLTWg6Hb5LYOWvvBLKUd7Ano2l26rD-p8cbWU_glZpXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67971904</pqid></control><display><type>article</type><title>Permeation and gating in proteins: kinetic Monte Carlo reaction path following</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Miloshevsky, Gennady V ; Jordan, Peter C</creator><creatorcontrib>Miloshevsky, Gennady V ; Jordan, Peter C</creatorcontrib><description>We present a new Monte Carlo technique, kinetic Monte Carlo reaction path following (kMCRPF), for the computer simulation of permeation and large-scale gating transitions in protein channels. It combines ideas from Metropolis Monte Carlo (MMC) and kinetic Monte Carlo (kMC) algorithms, and is particularly suitable when a reaction coordinate is well defined. Evolution of transition proceeds on the reaction coordinate by small jumps (kMC technique) toward the nearest lowest-energy uphill or downhill states, with the jumps thermally activated (constrained MMC). This approach permits navigation among potential minima on an energy surface, finding the minimum-energy paths and determining their associated free-energy profiles. The methodological and algorithmic strategies underlying the kMCRPF method are described. We have tested it using an analytical model and applied it to study permeation through the curvilinear ClC chloride and aquaporin pores and to gating in the gramicidin A channel. These studies of permeation and gating in real proteins provide extensive procedural tests of the method.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1924501</identifier><identifier>PMID: 15974784</identifier><language>eng</language><publisher>United States</publisher><subject>Chloride Channels - physiology ; Computer Simulation ; Gramicidin - chemistry ; Ion Channel Gating - physiology ; Kinetics ; Models, Molecular ; Monte Carlo Method ; Permeability ; Porosity ; Proteins - chemistry ; Thermodynamics</subject><ispartof>The Journal of chemical physics, 2005-06, Vol.122 (21), p.214901-214901</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-37cbe6588f2b856a7abe569a4814bfc2c7637d0f4924dbc756e3641dffef69773</citedby><cites>FETCH-LOGICAL-c316t-37cbe6588f2b856a7abe569a4814bfc2c7637d0f4924dbc756e3641dffef69773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15974784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miloshevsky, Gennady V</creatorcontrib><creatorcontrib>Jordan, Peter C</creatorcontrib><title>Permeation and gating in proteins: kinetic Monte Carlo reaction path following</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We present a new Monte Carlo technique, kinetic Monte Carlo reaction path following (kMCRPF), for the computer simulation of permeation and large-scale gating transitions in protein channels. It combines ideas from Metropolis Monte Carlo (MMC) and kinetic Monte Carlo (kMC) algorithms, and is particularly suitable when a reaction coordinate is well defined. Evolution of transition proceeds on the reaction coordinate by small jumps (kMC technique) toward the nearest lowest-energy uphill or downhill states, with the jumps thermally activated (constrained MMC). This approach permits navigation among potential minima on an energy surface, finding the minimum-energy paths and determining their associated free-energy profiles. The methodological and algorithmic strategies underlying the kMCRPF method are described. We have tested it using an analytical model and applied it to study permeation through the curvilinear ClC chloride and aquaporin pores and to gating in the gramicidin A channel. These studies of permeation and gating in real proteins provide extensive procedural tests of the method.</description><subject>Chloride Channels - physiology</subject><subject>Computer Simulation</subject><subject>Gramicidin - chemistry</subject><subject>Ion Channel Gating - physiology</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Monte Carlo Method</subject><subject>Permeability</subject><subject>Porosity</subject><subject>Proteins - chemistry</subject><subject>Thermodynamics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAQRS0EoqWw4AeQV0gsUjyJY8fsUFUeUnksYB05zrgEErvYqRB_T6CRWM0szr2aOYScApsDE9klzEGlPGewR6bACpVIodg-mTKWQqIEExNyFOM7Ywxkyg_JBHIluSz4lDw-Y-hQ9413VLuarofVrWnj6Cb4HhsXr-hH47BvDH3wrke60KH1NKA2f6GN7t-o9W3rv4bgMTmwuo14Ms4Zeb1ZvizuktXT7f3iepWYDESfZNJUKPKisGlV5EJLXWEulOYF8Mqa1EiRyZpZPrxVV0bmAjPBobYWrVBSZjNyvusdrvzcYuzLrokG21Y79NtYCqkkKMYH8GIHmuBjDGjLTWg6Hb5LYOWvvBLKUd7Ano2l26rD-p8cbWU_glZpXQ</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Miloshevsky, Gennady V</creator><creator>Jordan, Peter C</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050601</creationdate><title>Permeation and gating in proteins: kinetic Monte Carlo reaction path following</title><author>Miloshevsky, Gennady V ; Jordan, Peter C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-37cbe6588f2b856a7abe569a4814bfc2c7637d0f4924dbc756e3641dffef69773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Chloride Channels - physiology</topic><topic>Computer Simulation</topic><topic>Gramicidin - chemistry</topic><topic>Ion Channel Gating - physiology</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Monte Carlo Method</topic><topic>Permeability</topic><topic>Porosity</topic><topic>Proteins - chemistry</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miloshevsky, Gennady V</creatorcontrib><creatorcontrib>Jordan, Peter C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miloshevsky, Gennady V</au><au>Jordan, Peter C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permeation and gating in proteins: kinetic Monte Carlo reaction path following</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2005-06-01</date><risdate>2005</risdate><volume>122</volume><issue>21</issue><spage>214901</spage><epage>214901</epage><pages>214901-214901</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We present a new Monte Carlo technique, kinetic Monte Carlo reaction path following (kMCRPF), for the computer simulation of permeation and large-scale gating transitions in protein channels. It combines ideas from Metropolis Monte Carlo (MMC) and kinetic Monte Carlo (kMC) algorithms, and is particularly suitable when a reaction coordinate is well defined. Evolution of transition proceeds on the reaction coordinate by small jumps (kMC technique) toward the nearest lowest-energy uphill or downhill states, with the jumps thermally activated (constrained MMC). This approach permits navigation among potential minima on an energy surface, finding the minimum-energy paths and determining their associated free-energy profiles. The methodological and algorithmic strategies underlying the kMCRPF method are described. We have tested it using an analytical model and applied it to study permeation through the curvilinear ClC chloride and aquaporin pores and to gating in the gramicidin A channel. These studies of permeation and gating in real proteins provide extensive procedural tests of the method.</abstract><cop>United States</cop><pmid>15974784</pmid><doi>10.1063/1.1924501</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2005-06, Vol.122 (21), p.214901-214901
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_67971904
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Chloride Channels - physiology
Computer Simulation
Gramicidin - chemistry
Ion Channel Gating - physiology
Kinetics
Models, Molecular
Monte Carlo Method
Permeability
Porosity
Proteins - chemistry
Thermodynamics
title Permeation and gating in proteins: kinetic Monte Carlo reaction path following
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permeation%20and%20gating%20in%20proteins:%20kinetic%20Monte%20Carlo%20reaction%20path%20following&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Miloshevsky,%20Gennady%20V&rft.date=2005-06-01&rft.volume=122&rft.issue=21&rft.spage=214901&rft.epage=214901&rft.pages=214901-214901&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1924501&rft_dat=%3Cproquest_cross%3E67971904%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-37cbe6588f2b856a7abe569a4814bfc2c7637d0f4924dbc756e3641dffef69773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67971904&rft_id=info:pmid/15974784&rfr_iscdi=true