Loading…
Permeation and gating in proteins: kinetic Monte Carlo reaction path following
We present a new Monte Carlo technique, kinetic Monte Carlo reaction path following (kMCRPF), for the computer simulation of permeation and large-scale gating transitions in protein channels. It combines ideas from Metropolis Monte Carlo (MMC) and kinetic Monte Carlo (kMC) algorithms, and is particu...
Saved in:
Published in: | The Journal of chemical physics 2005-06, Vol.122 (21), p.214901-214901 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-37cbe6588f2b856a7abe569a4814bfc2c7637d0f4924dbc756e3641dffef69773 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-37cbe6588f2b856a7abe569a4814bfc2c7637d0f4924dbc756e3641dffef69773 |
container_end_page | 214901 |
container_issue | 21 |
container_start_page | 214901 |
container_title | The Journal of chemical physics |
container_volume | 122 |
creator | Miloshevsky, Gennady V Jordan, Peter C |
description | We present a new Monte Carlo technique, kinetic Monte Carlo reaction path following (kMCRPF), for the computer simulation of permeation and large-scale gating transitions in protein channels. It combines ideas from Metropolis Monte Carlo (MMC) and kinetic Monte Carlo (kMC) algorithms, and is particularly suitable when a reaction coordinate is well defined. Evolution of transition proceeds on the reaction coordinate by small jumps (kMC technique) toward the nearest lowest-energy uphill or downhill states, with the jumps thermally activated (constrained MMC). This approach permits navigation among potential minima on an energy surface, finding the minimum-energy paths and determining their associated free-energy profiles. The methodological and algorithmic strategies underlying the kMCRPF method are described. We have tested it using an analytical model and applied it to study permeation through the curvilinear ClC chloride and aquaporin pores and to gating in the gramicidin A channel. These studies of permeation and gating in real proteins provide extensive procedural tests of the method. |
doi_str_mv | 10.1063/1.1924501 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67971904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67971904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-37cbe6588f2b856a7abe569a4814bfc2c7637d0f4924dbc756e3641dffef69773</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EoqWw4AeQV0gsUjyJY8fsUFUeUnksYB05zrgEErvYqRB_T6CRWM0szr2aOYScApsDE9klzEGlPGewR6bACpVIodg-mTKWQqIEExNyFOM7Ywxkyg_JBHIluSz4lDw-Y-hQ9413VLuarofVrWnj6Cb4HhsXr-hH47BvDH3wrke60KH1NKA2f6GN7t-o9W3rv4bgMTmwuo14Ms4Zeb1ZvizuktXT7f3iepWYDESfZNJUKPKisGlV5EJLXWEulOYF8Mqa1EiRyZpZPrxVV0bmAjPBobYWrVBSZjNyvusdrvzcYuzLrokG21Y79NtYCqkkKMYH8GIHmuBjDGjLTWg6Hb5LYOWvvBLKUd7Ano2l26rD-p8cbWU_glZpXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67971904</pqid></control><display><type>article</type><title>Permeation and gating in proteins: kinetic Monte Carlo reaction path following</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Miloshevsky, Gennady V ; Jordan, Peter C</creator><creatorcontrib>Miloshevsky, Gennady V ; Jordan, Peter C</creatorcontrib><description>We present a new Monte Carlo technique, kinetic Monte Carlo reaction path following (kMCRPF), for the computer simulation of permeation and large-scale gating transitions in protein channels. It combines ideas from Metropolis Monte Carlo (MMC) and kinetic Monte Carlo (kMC) algorithms, and is particularly suitable when a reaction coordinate is well defined. Evolution of transition proceeds on the reaction coordinate by small jumps (kMC technique) toward the nearest lowest-energy uphill or downhill states, with the jumps thermally activated (constrained MMC). This approach permits navigation among potential minima on an energy surface, finding the minimum-energy paths and determining their associated free-energy profiles. The methodological and algorithmic strategies underlying the kMCRPF method are described. We have tested it using an analytical model and applied it to study permeation through the curvilinear ClC chloride and aquaporin pores and to gating in the gramicidin A channel. These studies of permeation and gating in real proteins provide extensive procedural tests of the method.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1924501</identifier><identifier>PMID: 15974784</identifier><language>eng</language><publisher>United States</publisher><subject>Chloride Channels - physiology ; Computer Simulation ; Gramicidin - chemistry ; Ion Channel Gating - physiology ; Kinetics ; Models, Molecular ; Monte Carlo Method ; Permeability ; Porosity ; Proteins - chemistry ; Thermodynamics</subject><ispartof>The Journal of chemical physics, 2005-06, Vol.122 (21), p.214901-214901</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-37cbe6588f2b856a7abe569a4814bfc2c7637d0f4924dbc756e3641dffef69773</citedby><cites>FETCH-LOGICAL-c316t-37cbe6588f2b856a7abe569a4814bfc2c7637d0f4924dbc756e3641dffef69773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15974784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miloshevsky, Gennady V</creatorcontrib><creatorcontrib>Jordan, Peter C</creatorcontrib><title>Permeation and gating in proteins: kinetic Monte Carlo reaction path following</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We present a new Monte Carlo technique, kinetic Monte Carlo reaction path following (kMCRPF), for the computer simulation of permeation and large-scale gating transitions in protein channels. It combines ideas from Metropolis Monte Carlo (MMC) and kinetic Monte Carlo (kMC) algorithms, and is particularly suitable when a reaction coordinate is well defined. Evolution of transition proceeds on the reaction coordinate by small jumps (kMC technique) toward the nearest lowest-energy uphill or downhill states, with the jumps thermally activated (constrained MMC). This approach permits navigation among potential minima on an energy surface, finding the minimum-energy paths and determining their associated free-energy profiles. The methodological and algorithmic strategies underlying the kMCRPF method are described. We have tested it using an analytical model and applied it to study permeation through the curvilinear ClC chloride and aquaporin pores and to gating in the gramicidin A channel. These studies of permeation and gating in real proteins provide extensive procedural tests of the method.</description><subject>Chloride Channels - physiology</subject><subject>Computer Simulation</subject><subject>Gramicidin - chemistry</subject><subject>Ion Channel Gating - physiology</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Monte Carlo Method</subject><subject>Permeability</subject><subject>Porosity</subject><subject>Proteins - chemistry</subject><subject>Thermodynamics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAQRS0EoqWw4AeQV0gsUjyJY8fsUFUeUnksYB05zrgEErvYqRB_T6CRWM0szr2aOYScApsDE9klzEGlPGewR6bACpVIodg-mTKWQqIEExNyFOM7Ywxkyg_JBHIluSz4lDw-Y-hQ9413VLuarofVrWnj6Cb4HhsXr-hH47BvDH3wrke60KH1NKA2f6GN7t-o9W3rv4bgMTmwuo14Ms4Zeb1ZvizuktXT7f3iepWYDESfZNJUKPKisGlV5EJLXWEulOYF8Mqa1EiRyZpZPrxVV0bmAjPBobYWrVBSZjNyvusdrvzcYuzLrokG21Y79NtYCqkkKMYH8GIHmuBjDGjLTWg6Hb5LYOWvvBLKUd7Ano2l26rD-p8cbWU_glZpXQ</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Miloshevsky, Gennady V</creator><creator>Jordan, Peter C</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050601</creationdate><title>Permeation and gating in proteins: kinetic Monte Carlo reaction path following</title><author>Miloshevsky, Gennady V ; Jordan, Peter C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-37cbe6588f2b856a7abe569a4814bfc2c7637d0f4924dbc756e3641dffef69773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Chloride Channels - physiology</topic><topic>Computer Simulation</topic><topic>Gramicidin - chemistry</topic><topic>Ion Channel Gating - physiology</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Monte Carlo Method</topic><topic>Permeability</topic><topic>Porosity</topic><topic>Proteins - chemistry</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miloshevsky, Gennady V</creatorcontrib><creatorcontrib>Jordan, Peter C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miloshevsky, Gennady V</au><au>Jordan, Peter C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permeation and gating in proteins: kinetic Monte Carlo reaction path following</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2005-06-01</date><risdate>2005</risdate><volume>122</volume><issue>21</issue><spage>214901</spage><epage>214901</epage><pages>214901-214901</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We present a new Monte Carlo technique, kinetic Monte Carlo reaction path following (kMCRPF), for the computer simulation of permeation and large-scale gating transitions in protein channels. It combines ideas from Metropolis Monte Carlo (MMC) and kinetic Monte Carlo (kMC) algorithms, and is particularly suitable when a reaction coordinate is well defined. Evolution of transition proceeds on the reaction coordinate by small jumps (kMC technique) toward the nearest lowest-energy uphill or downhill states, with the jumps thermally activated (constrained MMC). This approach permits navigation among potential minima on an energy surface, finding the minimum-energy paths and determining their associated free-energy profiles. The methodological and algorithmic strategies underlying the kMCRPF method are described. We have tested it using an analytical model and applied it to study permeation through the curvilinear ClC chloride and aquaporin pores and to gating in the gramicidin A channel. These studies of permeation and gating in real proteins provide extensive procedural tests of the method.</abstract><cop>United States</cop><pmid>15974784</pmid><doi>10.1063/1.1924501</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2005-06, Vol.122 (21), p.214901-214901 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_67971904 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Chloride Channels - physiology Computer Simulation Gramicidin - chemistry Ion Channel Gating - physiology Kinetics Models, Molecular Monte Carlo Method Permeability Porosity Proteins - chemistry Thermodynamics |
title | Permeation and gating in proteins: kinetic Monte Carlo reaction path following |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permeation%20and%20gating%20in%20proteins:%20kinetic%20Monte%20Carlo%20reaction%20path%20following&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Miloshevsky,%20Gennady%20V&rft.date=2005-06-01&rft.volume=122&rft.issue=21&rft.spage=214901&rft.epage=214901&rft.pages=214901-214901&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1924501&rft_dat=%3Cproquest_cross%3E67971904%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-37cbe6588f2b856a7abe569a4814bfc2c7637d0f4924dbc756e3641dffef69773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67971904&rft_id=info:pmid/15974784&rfr_iscdi=true |