Loading…

Large Sex Difference in Adolescents on a Timed Line Judgment Task: Attentional Contributors and Task Relationship to Mathematics

Visuospatial performance, assessed with the new, group-administered Judgment of Line Angle and Position test (JLAP-13), varied with sex and mathematical competence in a group of adolescents. The JLAP-13, a low-level perceptual task, was modeled after a neuropsychological task dependent upon function...

Full description

Saved in:
Bibliographic Details
Published in:Perception (London) 2006-01, Vol.35 (4), p.561-572
Main Authors: Collaer, Marcia L, Hill, Erica M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Visuospatial performance, assessed with the new, group-administered Judgment of Line Angle and Position test (JLAP-13), varied with sex and mathematical competence in a group of adolescents. The JLAP-13, a low-level perceptual task, was modeled after a neuropsychological task dependent upon functioning of the posterior region of the right hemisphere [Benton et al, 1994 Contributions to Neuropsychological Assessment: A Clinical Manual (New York: Oxford University Press)]. High-school boys (N = 52) performed better than girls (N = 62), with a large effect for sex (d= 1.11). Performance increased with mathematical competence, but the sex difference did not vary significantly across different levels of mathematics coursework. On the basis of earlier work, it was predicted that male, but not female, performance in line judgment would decline with disruptions to task geometry (page frame), and that the sex difference would disappear with disruptions to geometry. These predictions were supported by a number of univariate and sex-specific analyses, although an omnibus repeated-measures analysis did not detect the predicted interaction, most likely owing to limitations in power. Thus, there is partial support for the notion that attentional predispositions or strategies may contribute to visuospatial sex differences, with males more likely than females to attend to, and rely upon, internal or external representations of task geometry. Additional support for this hypothesis may require development of new measures or experimental manipulations with more powerful geometrical disruptions.
ISSN:0301-0066
1468-4233
DOI:10.1068/p5003