Loading…
Cascade of shocks in inertial liquid-liquid dewetting
We study the inertial dewetting of water films (A) (thickness e) deposited on highly hydrophobic liquid substrates (B). On these ideal surfaces, thin films can be made which dewet at large velocities obeying under those conditions the Culick law for the bursting of soap films. The rim collecting the...
Saved in:
Published in: | Physical review letters 2006-04, Vol.96 (15), p.156101-156101, Article 156101 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the inertial dewetting of water films (A) (thickness e) deposited on highly hydrophobic liquid substrates (B). On these ideal surfaces, thin films can be made which dewet at large velocities obeying under those conditions the Culick law for the bursting of soap films. The rim collecting the water film can become coupled to the surface waves characterized by a surface tension gamma(B) upstream of the rim (coated substrate) and gamma = gamma(B) downstream, where the water film has dried. Upon decreasing the thickness, we observe a sequence of two hydraulic shocks during the dewetting inducing gravity waves behind the rim, and capillary waves ahead. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.96.156101 |