Loading…

Shock-wave mach-reflection slip-stream instability: a secondary small-scale turbulent mixing phenomenon

Theoretical and experimental research, on the previously unresolved instability occurring along the slip stream of a shock-wave Mach reflection, is presented. Growth rates of the large-scale Kelvin-Helmholtz shear flow instability are used to model the evolution of the slip-stream instability in ide...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2006-05, Vol.96 (17), p.174503-174503, Article 174503
Main Authors: Rikanati, A, Sadot, O, Ben-Dor, G, Shvarts, D, Kuribayashi, T, Takayama, K
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c373t-741a0df510b1b5f07149c485610ea0f7192655123cd14225c590f146c564603e3
cites cdi_FETCH-LOGICAL-c373t-741a0df510b1b5f07149c485610ea0f7192655123cd14225c590f146c564603e3
container_end_page 174503
container_issue 17
container_start_page 174503
container_title Physical review letters
container_volume 96
creator Rikanati, A
Sadot, O
Ben-Dor, G
Shvarts, D
Kuribayashi, T
Takayama, K
description Theoretical and experimental research, on the previously unresolved instability occurring along the slip stream of a shock-wave Mach reflection, is presented. Growth rates of the large-scale Kelvin-Helmholtz shear flow instability are used to model the evolution of the slip-stream instability in ideal gas, thus indicating secondary small-scale growth of the Kelvin-Helmholtz instability as the cause for the slip-stream thickening. The model is validated through experiments measuring the instability growth rates for a range of Mach numbers and reflection wedge angles. Good agreement is found for Reynolds numbers of Re 2 x 10(4). This work demonstrates, for the first time, the use of large-scale models of the Kelvin-Helmholtz instability in modeling secondary turbulent mixing in hydrodynamic flows, a methodology which could be further implemented in many important secondary mixing processes.
doi_str_mv 10.1103/physrevlett.96.174503
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67998898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67998898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-741a0df510b1b5f07149c485610ea0f7192655123cd14225c590f146c564603e3</originalsourceid><addsrcrecordid>eNpFkEtv2zAQhImiQeOm_QkJeOqNzq4okmJuRdAXYCBBkp4Fil7FTKlHRcqt_31V2EAOi7nM7Ox-jF0irBFBXo-7Q5poHynntdVrNKUC-YatEIwVBrF8y1YAEoUFMOfsfUovAICFrt6xc9QGCwlyxZ4fd4P_Jf64PfHO-Z2YqI3kcxh6nmIYRcoTuY6HPmXXhBjy4YY7nsgP_dZNB546F6NI3kXieZ6aOVKfeRf-hv6Zjzvqh26Z_gM7a11M9PGkF-zn1y9Pt9_F5u7bj9vPG-GlkVmYEh1sW4XQYKNaMFhaX1ZKI5CD1qAttFLL7X6LZVEoryy0WGqvdKlBkrxgn457x2n4PVPKdReSpxhdT8Ocam2srSpbLUZ1NPppSAvJth6n0C0f1Qj1f8L1_UL4gfabhXBtdX0kvOSuTgVz09H2NXVCKv8Bhzp7dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67998898</pqid></control><display><type>article</type><title>Shock-wave mach-reflection slip-stream instability: a secondary small-scale turbulent mixing phenomenon</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Rikanati, A ; Sadot, O ; Ben-Dor, G ; Shvarts, D ; Kuribayashi, T ; Takayama, K</creator><creatorcontrib>Rikanati, A ; Sadot, O ; Ben-Dor, G ; Shvarts, D ; Kuribayashi, T ; Takayama, K</creatorcontrib><description>Theoretical and experimental research, on the previously unresolved instability occurring along the slip stream of a shock-wave Mach reflection, is presented. Growth rates of the large-scale Kelvin-Helmholtz shear flow instability are used to model the evolution of the slip-stream instability in ideal gas, thus indicating secondary small-scale growth of the Kelvin-Helmholtz instability as the cause for the slip-stream thickening. The model is validated through experiments measuring the instability growth rates for a range of Mach numbers and reflection wedge angles. Good agreement is found for Reynolds numbers of Re 2 x 10(4). This work demonstrates, for the first time, the use of large-scale models of the Kelvin-Helmholtz instability in modeling secondary turbulent mixing in hydrodynamic flows, a methodology which could be further implemented in many important secondary mixing processes.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.96.174503</identifier><identifier>PMID: 16712303</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2006-05, Vol.96 (17), p.174503-174503, Article 174503</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-741a0df510b1b5f07149c485610ea0f7192655123cd14225c590f146c564603e3</citedby><cites>FETCH-LOGICAL-c373t-741a0df510b1b5f07149c485610ea0f7192655123cd14225c590f146c564603e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16712303$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rikanati, A</creatorcontrib><creatorcontrib>Sadot, O</creatorcontrib><creatorcontrib>Ben-Dor, G</creatorcontrib><creatorcontrib>Shvarts, D</creatorcontrib><creatorcontrib>Kuribayashi, T</creatorcontrib><creatorcontrib>Takayama, K</creatorcontrib><title>Shock-wave mach-reflection slip-stream instability: a secondary small-scale turbulent mixing phenomenon</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Theoretical and experimental research, on the previously unresolved instability occurring along the slip stream of a shock-wave Mach reflection, is presented. Growth rates of the large-scale Kelvin-Helmholtz shear flow instability are used to model the evolution of the slip-stream instability in ideal gas, thus indicating secondary small-scale growth of the Kelvin-Helmholtz instability as the cause for the slip-stream thickening. The model is validated through experiments measuring the instability growth rates for a range of Mach numbers and reflection wedge angles. Good agreement is found for Reynolds numbers of Re 2 x 10(4). This work demonstrates, for the first time, the use of large-scale models of the Kelvin-Helmholtz instability in modeling secondary turbulent mixing in hydrodynamic flows, a methodology which could be further implemented in many important secondary mixing processes.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkEtv2zAQhImiQeOm_QkJeOqNzq4okmJuRdAXYCBBkp4Fil7FTKlHRcqt_31V2EAOi7nM7Ox-jF0irBFBXo-7Q5poHynntdVrNKUC-YatEIwVBrF8y1YAEoUFMOfsfUovAICFrt6xc9QGCwlyxZ4fd4P_Jf64PfHO-Z2YqI3kcxh6nmIYRcoTuY6HPmXXhBjy4YY7nsgP_dZNB546F6NI3kXieZ6aOVKfeRf-hv6Zjzvqh26Z_gM7a11M9PGkF-zn1y9Pt9_F5u7bj9vPG-GlkVmYEh1sW4XQYKNaMFhaX1ZKI5CD1qAttFLL7X6LZVEoryy0WGqvdKlBkrxgn457x2n4PVPKdReSpxhdT8Ocam2srSpbLUZ1NPppSAvJth6n0C0f1Qj1f8L1_UL4gfabhXBtdX0kvOSuTgVz09H2NXVCKv8Bhzp7dg</recordid><startdate>20060505</startdate><enddate>20060505</enddate><creator>Rikanati, A</creator><creator>Sadot, O</creator><creator>Ben-Dor, G</creator><creator>Shvarts, D</creator><creator>Kuribayashi, T</creator><creator>Takayama, K</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060505</creationdate><title>Shock-wave mach-reflection slip-stream instability: a secondary small-scale turbulent mixing phenomenon</title><author>Rikanati, A ; Sadot, O ; Ben-Dor, G ; Shvarts, D ; Kuribayashi, T ; Takayama, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-741a0df510b1b5f07149c485610ea0f7192655123cd14225c590f146c564603e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rikanati, A</creatorcontrib><creatorcontrib>Sadot, O</creatorcontrib><creatorcontrib>Ben-Dor, G</creatorcontrib><creatorcontrib>Shvarts, D</creatorcontrib><creatorcontrib>Kuribayashi, T</creatorcontrib><creatorcontrib>Takayama, K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rikanati, A</au><au>Sadot, O</au><au>Ben-Dor, G</au><au>Shvarts, D</au><au>Kuribayashi, T</au><au>Takayama, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shock-wave mach-reflection slip-stream instability: a secondary small-scale turbulent mixing phenomenon</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2006-05-05</date><risdate>2006</risdate><volume>96</volume><issue>17</issue><spage>174503</spage><epage>174503</epage><pages>174503-174503</pages><artnum>174503</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Theoretical and experimental research, on the previously unresolved instability occurring along the slip stream of a shock-wave Mach reflection, is presented. Growth rates of the large-scale Kelvin-Helmholtz shear flow instability are used to model the evolution of the slip-stream instability in ideal gas, thus indicating secondary small-scale growth of the Kelvin-Helmholtz instability as the cause for the slip-stream thickening. The model is validated through experiments measuring the instability growth rates for a range of Mach numbers and reflection wedge angles. Good agreement is found for Reynolds numbers of Re 2 x 10(4). This work demonstrates, for the first time, the use of large-scale models of the Kelvin-Helmholtz instability in modeling secondary turbulent mixing in hydrodynamic flows, a methodology which could be further implemented in many important secondary mixing processes.</abstract><cop>United States</cop><pmid>16712303</pmid><doi>10.1103/physrevlett.96.174503</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2006-05, Vol.96 (17), p.174503-174503, Article 174503
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_67998898
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Shock-wave mach-reflection slip-stream instability: a secondary small-scale turbulent mixing phenomenon
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A50%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shock-wave%20mach-reflection%20slip-stream%20instability:%20a%20secondary%20small-scale%20turbulent%20mixing%20phenomenon&rft.jtitle=Physical%20review%20letters&rft.au=Rikanati,%20A&rft.date=2006-05-05&rft.volume=96&rft.issue=17&rft.spage=174503&rft.epage=174503&rft.pages=174503-174503&rft.artnum=174503&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.96.174503&rft_dat=%3Cproquest_cross%3E67998898%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-741a0df510b1b5f07149c485610ea0f7192655123cd14225c590f146c564603e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67998898&rft_id=info:pmid/16712303&rfr_iscdi=true