Loading…

Deficiency of the Very Low-Density Lipoprotein (VLDL) Receptors in Streptozotocin-Induced Diabetic Rats: Insulin Dependency of the VLDL Receptor

Hyperlipidemia is a common feature of diabetes and is related to cardiovascular disease. The very low-density lipoprotein receptor (VLDL-R) is a member of the low-density lipoprotein receptor (LDL-R) family. It binds and internalizes triglyceride-rich lipoproteins with high specificity. We examined...

Full description

Saved in:
Bibliographic Details
Published in:Endocrinology (Philadelphia) 2005-08, Vol.146 (8), p.3286-3294
Main Authors: Iwasaki, Tadao, Takahashi, Sadao, Takahashi, Masao, Zenimaru, Yasuo, Kujiraoka, Takeshi, Ishihara, Mitsuaki, Nagano, Makoto, Suzuki, Jinya, Miyamori, Isamu, Naiki, Hironobu, Sakai, Juro, Fujino, Takahiro, Miller, Norman E, Yamamoto, Tokuo T, Hattori, Hiroaki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hyperlipidemia is a common feature of diabetes and is related to cardiovascular disease. The very low-density lipoprotein receptor (VLDL-R) is a member of the low-density lipoprotein receptor (LDL-R) family. It binds and internalizes triglyceride-rich lipoproteins with high specificity. We examined the etiology of hyperlipidemia in the insulin-deficient state. VLDL-R expression in heart and skeletal muscle were measured in rats with streptozotocin (STZ)-induced diabetes. STZ rats showed severe hyperlipidemia on d 21 and 28, with a dramatic decline in VLDL-R protein in skeletal muscle (>90%), heart (∼50%) and a loss of adipose tissues itself on d 28. The reduction of VLDL-R protein in skeletal muscle could not be explained simply by a decrease at the transcriptional level, because a dissociation between VLDL-R protein and mRNA expression was observed. The expression of LDL-R and LDL-R-related protein in liver showed no consistent changes. Furthermore, no effect on VLDL-triglyceride production in liver was observed in STZ rats. A decrease in postheparin plasma lipoprotein lipase activity started on d 7 and continued to d 28 at the 50% level even though severe hyperlipidemia was detected only on d 21 and 28. In rat myoblast cells, serum deprivation for 24 h induced a reduction in VLDL-R proteins. Insulin (10−6 m), but not IGF-I (10 ng/ml), restored the decreased VLDL-R proteins by serum deprivation. These results suggest that the combination of VLDL-R deficiency and reduced plasma lipoprotein lipase activity may be responsible for severe hyperlipidemia in insulin-deficient diabetes.
ISSN:0013-7227
1945-7170
DOI:10.1210/en.2005-0043