Loading…

Rapid mycobacteria drug susceptibility testing using Gel Microdrop (GMD) Growth Assay and flow cytometry

Control of multi-drug-resistant tuberculosis has been hampered by the lack of simple, rapid and sensitive methods for assessing bacterial growth and antimicrobial susceptibility. Due to the increasing incidence and high frequency of mutations, it is unlikely that culture methods will disappear in th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of microbiological methods 2005-08, Vol.62 (2), p.181-197
Main Authors: Akselband, Y., Cabral, C., Shapiro, D.S., McGrath, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Control of multi-drug-resistant tuberculosis has been hampered by the lack of simple, rapid and sensitive methods for assessing bacterial growth and antimicrobial susceptibility. Due to the increasing incidence and high frequency of mutations, it is unlikely that culture methods will disappear in the foreseeable future. Therefore, the need to modernize methods for rapid detection of viable clinical isolates, at a minimum as a gold standard, will persist. Previously, we confirmed the feasibility of using the Gel Microdrop (GMD) Growth Assay for identifying sub-populations of resistant Mycobacteria by testing different laboratory strains. Briefly, this assay format relies on encapsulating single bacterium in agarose microspheres and identifying clonogenic growth using flow cytometry and fluorescent staining. In this study, we modified the GMD Growth Assay to make it suitable for clinical applications. We demonstrated the effectiveness and safety of this novel approach for detecting drug susceptibility in clinically relevant laboratory strains as well as clinical isolates of Mycobacterium tuberculosis. Correlation between results using the GMD Growth Assay format and results using two well characterized methods (Broth Microdilution MIC and BACTEC 460TB) was 87.5% and 90%, respectively. However, due to the inherent sensitivity of flow cytometry and the ability to detect small (
ISSN:0167-7012
1872-8359
DOI:10.1016/j.mimet.2005.02.012