Loading…

Erythropoietin promotes regeneration of adult CNS neurons via Jak2/Stat3 and PI3K/AKT pathway activation

The cytokine hormone erythropoietin (EPO) has proved neuroprotective in CNS injury, and clinical trials for ischemic stroke are ongoing. The capability of EPO to restore postmitotic CNS architecture and function by fibre regeneration has not been examined. Here, we compared in vitro outgrowth capaci...

Full description

Saved in:
Bibliographic Details
Published in:Molecular and cellular neuroscience 2005-08, Vol.29 (4), p.569-579
Main Authors: Kretz, Alexandra, Happold, Caroline J., Marticke, Julia K., Isenmann, Stefan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The cytokine hormone erythropoietin (EPO) has proved neuroprotective in CNS injury, and clinical trials for ischemic stroke are ongoing. The capability of EPO to restore postmitotic CNS architecture and function by fibre regeneration has not been examined. Here, we compared in vitro outgrowth capacity of adult retinal ganglion cells (RGCs) following optic nerve (ON) lesion in the presence and absence of EPO. Immediate EPO conditioning in vivo, or delayed EPO treatment of cultures with 10–10,000 IU rhEPO significantly increased numbers (2.66-fold) and length (8.31-fold) of newly generated neurites, without evoking rheological complications. EPO induced Stat3 phosphorylation in RGCs, and inhibition of Jak2/Stat3 abolished EPO-induced growth. EPO-facilitated neuritogenesis was paralleled by upregulation of Bcl-X L, a Bcl-2 homologue capable of promoting RGC regeneration. The PI3K/Akt pathway was also involved in antiapoptotic and regeneration-enhancing EPO actions. In conclusion, EPO treatment may offer a unique dual-function strategy for neuroprotection and regeneration.
ISSN:1044-7431
1095-9327
DOI:10.1016/j.mcn.2005.04.009