Loading…

Molecular characterization of sulfate-reducing bacteria in a New England salt marsh

Summary Sulfate reduction, mediated by sulfate‐reducing bacteria (SRB), is the dominant remineralization pathway in sediments of New England salt marshes. High sulfate reduction rates are associated with the rhizosphere of Spartina alterniflora when plants elongate aboveground. The growth process co...

Full description

Saved in:
Bibliographic Details
Published in:Environmental microbiology 2005-08, Vol.7 (8), p.1175-1185
Main Authors: Bahr, Michele, Crump, Byron C., Klepac-Ceraj, Vanja, Teske, Andreas, Sogin, Mitchell L., Hobbie, John E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5516-d8d178692590bb52d47c9b0bcc39307de7779bfffaa9d1cdf05a342c22bb0ad93
cites cdi_FETCH-LOGICAL-c5516-d8d178692590bb52d47c9b0bcc39307de7779bfffaa9d1cdf05a342c22bb0ad93
container_end_page 1185
container_issue 8
container_start_page 1175
container_title Environmental microbiology
container_volume 7
creator Bahr, Michele
Crump, Byron C.
Klepac-Ceraj, Vanja
Teske, Andreas
Sogin, Mitchell L.
Hobbie, John E.
description Summary Sulfate reduction, mediated by sulfate‐reducing bacteria (SRB), is the dominant remineralization pathway in sediments of New England salt marshes. High sulfate reduction rates are associated with the rhizosphere of Spartina alterniflora when plants elongate aboveground. The growth process concurrently produces significant amounts of new rhizome material belowground and the plants leak dissolved organic compounds. This study investigated the diversity of SRB in a salt marsh over an annual growth cycle of S. alterniflora by exploring the diversity of a functional gene, dissimilatory sulfite reductase (dsrAB). Because the dsrAB gene is a key gene in the anaerobic sulfate‐respiration pathway, it allows the identification of microorganisms responsible for sulfate reduction. Conserved dsrAB primers in polymerase chain reaction (PCR) generated full‐length dsrAB amplicons for cloning and DNA sequence analysis. Nearly 80% of 380 clone sequences were similar to genes from Desulfosarcina and Desulfobacterium species within Desulfobacteraceae. This reinforces the hypothesis that complete oxidizers with high substrate versatility dominate the marsh. However, the phylotypes formed several clades that were distinct from cultured representatives, indicating a greater diversity of SRB than previously appreciated. Several dsrAB sequences were related to homologues from Gram‐positive, thermophilic and non‐thermophilic Desulfotomaculum species. One dsrAB lineage formed a sister group to cultured members of the delta‐proteobacterial group Syntrophobacteraceae. A deeply branching dsrAB lineage was not affiliated with genes from any cultured SRB. The sequence data from this study will allow for the design of probes or primers that can quantitatively assess the diverse range of sulfate reducers present in the environment.
doi_str_mv 10.1111/j.1462-2920.2005.00796.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68029130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68029130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5516-d8d178692590bb52d47c9b0bcc39307de7779bfffaa9d1cdf05a342c22bb0ad93</originalsourceid><addsrcrecordid>eNqNkUtv1DAURi1ERUvhLyCv2CVc27E9lthAO7RVXyBALC2_0mbIJMVO1Gl_PQ4ZTZfFG1_J57v2PUYIEyhJXh9WJakELaiiUFIAXgJIJcrNC3SwO3i5qwndR69TWgEQySS8QvtEACGSVwfo-2XfBje2JmJ3a6JxQ4jNoxmavsN9jdPY1mYIRQx-dE13g-1MGNx02OCrcI-X3U1rOo-TaQe8NjHdvkF7tWlTeLvdD9HPL8sfR6fFxfXJ2dGni8JxTkThF57IhVCUK7CWU19JpyxY55hiIH2QUipb17UxyhPna-CGVdRRai0Yr9ghej_3vYv9nzGkQa-b5EKbnxP6MWmxgDw8g2dBIkXFGJnAxQy62KcUQ63vYpNnetAE9GRer_QkVU-C9WRe_zOvNzn6bnvHaNfBPwW3qjPwcQbumzY8_Hdjvbw8y0WOF3O8SUPY7OIm_tYi_yrXv65OtKDf-Nfj83P9mf0FJVGg6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17643310</pqid></control><display><type>article</type><title>Molecular characterization of sulfate-reducing bacteria in a New England salt marsh</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Bahr, Michele ; Crump, Byron C. ; Klepac-Ceraj, Vanja ; Teske, Andreas ; Sogin, Mitchell L. ; Hobbie, John E.</creator><creatorcontrib>Bahr, Michele ; Crump, Byron C. ; Klepac-Ceraj, Vanja ; Teske, Andreas ; Sogin, Mitchell L. ; Hobbie, John E.</creatorcontrib><description>Summary Sulfate reduction, mediated by sulfate‐reducing bacteria (SRB), is the dominant remineralization pathway in sediments of New England salt marshes. High sulfate reduction rates are associated with the rhizosphere of Spartina alterniflora when plants elongate aboveground. The growth process concurrently produces significant amounts of new rhizome material belowground and the plants leak dissolved organic compounds. This study investigated the diversity of SRB in a salt marsh over an annual growth cycle of S. alterniflora by exploring the diversity of a functional gene, dissimilatory sulfite reductase (dsrAB). Because the dsrAB gene is a key gene in the anaerobic sulfate‐respiration pathway, it allows the identification of microorganisms responsible for sulfate reduction. Conserved dsrAB primers in polymerase chain reaction (PCR) generated full‐length dsrAB amplicons for cloning and DNA sequence analysis. Nearly 80% of 380 clone sequences were similar to genes from Desulfosarcina and Desulfobacterium species within Desulfobacteraceae. This reinforces the hypothesis that complete oxidizers with high substrate versatility dominate the marsh. However, the phylotypes formed several clades that were distinct from cultured representatives, indicating a greater diversity of SRB than previously appreciated. Several dsrAB sequences were related to homologues from Gram‐positive, thermophilic and non‐thermophilic Desulfotomaculum species. One dsrAB lineage formed a sister group to cultured members of the delta‐proteobacterial group Syntrophobacteraceae. A deeply branching dsrAB lineage was not affiliated with genes from any cultured SRB. The sequence data from this study will allow for the design of probes or primers that can quantitatively assess the diverse range of sulfate reducers present in the environment.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/j.1462-2920.2005.00796.x</identifier><identifier>PMID: 16011754</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Cloning, Molecular ; Deltaproteobacteria - classification ; Deltaproteobacteria - enzymology ; Deltaproteobacteria - genetics ; DNA, Bacterial - analysis ; Geologic Sediments - microbiology ; Molecular Sequence Data ; New England ; Oxidoreductases Acting on Sulfur Group Donors - genetics ; Peptococcaceae - classification ; Peptococcaceae - enzymology ; Peptococcaceae - genetics ; Poaceae ; Polymerase Chain Reaction ; Seawater - microbiology ; Sequence Analysis, DNA ; Sulfates ; Sulfur-Reducing Bacteria - classification ; Sulfur-Reducing Bacteria - enzymology ; Sulfur-Reducing Bacteria - genetics</subject><ispartof>Environmental microbiology, 2005-08, Vol.7 (8), p.1175-1185</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5516-d8d178692590bb52d47c9b0bcc39307de7779bfffaa9d1cdf05a342c22bb0ad93</citedby><cites>FETCH-LOGICAL-c5516-d8d178692590bb52d47c9b0bcc39307de7779bfffaa9d1cdf05a342c22bb0ad93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16011754$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bahr, Michele</creatorcontrib><creatorcontrib>Crump, Byron C.</creatorcontrib><creatorcontrib>Klepac-Ceraj, Vanja</creatorcontrib><creatorcontrib>Teske, Andreas</creatorcontrib><creatorcontrib>Sogin, Mitchell L.</creatorcontrib><creatorcontrib>Hobbie, John E.</creatorcontrib><title>Molecular characterization of sulfate-reducing bacteria in a New England salt marsh</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary Sulfate reduction, mediated by sulfate‐reducing bacteria (SRB), is the dominant remineralization pathway in sediments of New England salt marshes. High sulfate reduction rates are associated with the rhizosphere of Spartina alterniflora when plants elongate aboveground. The growth process concurrently produces significant amounts of new rhizome material belowground and the plants leak dissolved organic compounds. This study investigated the diversity of SRB in a salt marsh over an annual growth cycle of S. alterniflora by exploring the diversity of a functional gene, dissimilatory sulfite reductase (dsrAB). Because the dsrAB gene is a key gene in the anaerobic sulfate‐respiration pathway, it allows the identification of microorganisms responsible for sulfate reduction. Conserved dsrAB primers in polymerase chain reaction (PCR) generated full‐length dsrAB amplicons for cloning and DNA sequence analysis. Nearly 80% of 380 clone sequences were similar to genes from Desulfosarcina and Desulfobacterium species within Desulfobacteraceae. This reinforces the hypothesis that complete oxidizers with high substrate versatility dominate the marsh. However, the phylotypes formed several clades that were distinct from cultured representatives, indicating a greater diversity of SRB than previously appreciated. Several dsrAB sequences were related to homologues from Gram‐positive, thermophilic and non‐thermophilic Desulfotomaculum species. One dsrAB lineage formed a sister group to cultured members of the delta‐proteobacterial group Syntrophobacteraceae. A deeply branching dsrAB lineage was not affiliated with genes from any cultured SRB. The sequence data from this study will allow for the design of probes or primers that can quantitatively assess the diverse range of sulfate reducers present in the environment.</description><subject>Cloning, Molecular</subject><subject>Deltaproteobacteria - classification</subject><subject>Deltaproteobacteria - enzymology</subject><subject>Deltaproteobacteria - genetics</subject><subject>DNA, Bacterial - analysis</subject><subject>Geologic Sediments - microbiology</subject><subject>Molecular Sequence Data</subject><subject>New England</subject><subject>Oxidoreductases Acting on Sulfur Group Donors - genetics</subject><subject>Peptococcaceae - classification</subject><subject>Peptococcaceae - enzymology</subject><subject>Peptococcaceae - genetics</subject><subject>Poaceae</subject><subject>Polymerase Chain Reaction</subject><subject>Seawater - microbiology</subject><subject>Sequence Analysis, DNA</subject><subject>Sulfates</subject><subject>Sulfur-Reducing Bacteria - classification</subject><subject>Sulfur-Reducing Bacteria - enzymology</subject><subject>Sulfur-Reducing Bacteria - genetics</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkUtv1DAURi1ERUvhLyCv2CVc27E9lthAO7RVXyBALC2_0mbIJMVO1Gl_PQ4ZTZfFG1_J57v2PUYIEyhJXh9WJakELaiiUFIAXgJIJcrNC3SwO3i5qwndR69TWgEQySS8QvtEACGSVwfo-2XfBje2JmJ3a6JxQ4jNoxmavsN9jdPY1mYIRQx-dE13g-1MGNx02OCrcI-X3U1rOo-TaQe8NjHdvkF7tWlTeLvdD9HPL8sfR6fFxfXJ2dGni8JxTkThF57IhVCUK7CWU19JpyxY55hiIH2QUipb17UxyhPna-CGVdRRai0Yr9ghej_3vYv9nzGkQa-b5EKbnxP6MWmxgDw8g2dBIkXFGJnAxQy62KcUQ63vYpNnetAE9GRer_QkVU-C9WRe_zOvNzn6bnvHaNfBPwW3qjPwcQbumzY8_Hdjvbw8y0WOF3O8SUPY7OIm_tYi_yrXv65OtKDf-Nfj83P9mf0FJVGg6w</recordid><startdate>200508</startdate><enddate>200508</enddate><creator>Bahr, Michele</creator><creator>Crump, Byron C.</creator><creator>Klepac-Ceraj, Vanja</creator><creator>Teske, Andreas</creator><creator>Sogin, Mitchell L.</creator><creator>Hobbie, John E.</creator><general>Blackwell Science Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>200508</creationdate><title>Molecular characterization of sulfate-reducing bacteria in a New England salt marsh</title><author>Bahr, Michele ; Crump, Byron C. ; Klepac-Ceraj, Vanja ; Teske, Andreas ; Sogin, Mitchell L. ; Hobbie, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5516-d8d178692590bb52d47c9b0bcc39307de7779bfffaa9d1cdf05a342c22bb0ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Cloning, Molecular</topic><topic>Deltaproteobacteria - classification</topic><topic>Deltaproteobacteria - enzymology</topic><topic>Deltaproteobacteria - genetics</topic><topic>DNA, Bacterial - analysis</topic><topic>Geologic Sediments - microbiology</topic><topic>Molecular Sequence Data</topic><topic>New England</topic><topic>Oxidoreductases Acting on Sulfur Group Donors - genetics</topic><topic>Peptococcaceae - classification</topic><topic>Peptococcaceae - enzymology</topic><topic>Peptococcaceae - genetics</topic><topic>Poaceae</topic><topic>Polymerase Chain Reaction</topic><topic>Seawater - microbiology</topic><topic>Sequence Analysis, DNA</topic><topic>Sulfates</topic><topic>Sulfur-Reducing Bacteria - classification</topic><topic>Sulfur-Reducing Bacteria - enzymology</topic><topic>Sulfur-Reducing Bacteria - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahr, Michele</creatorcontrib><creatorcontrib>Crump, Byron C.</creatorcontrib><creatorcontrib>Klepac-Ceraj, Vanja</creatorcontrib><creatorcontrib>Teske, Andreas</creatorcontrib><creatorcontrib>Sogin, Mitchell L.</creatorcontrib><creatorcontrib>Hobbie, John E.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahr, Michele</au><au>Crump, Byron C.</au><au>Klepac-Ceraj, Vanja</au><au>Teske, Andreas</au><au>Sogin, Mitchell L.</au><au>Hobbie, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular characterization of sulfate-reducing bacteria in a New England salt marsh</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2005-08</date><risdate>2005</risdate><volume>7</volume><issue>8</issue><spage>1175</spage><epage>1185</epage><pages>1175-1185</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary Sulfate reduction, mediated by sulfate‐reducing bacteria (SRB), is the dominant remineralization pathway in sediments of New England salt marshes. High sulfate reduction rates are associated with the rhizosphere of Spartina alterniflora when plants elongate aboveground. The growth process concurrently produces significant amounts of new rhizome material belowground and the plants leak dissolved organic compounds. This study investigated the diversity of SRB in a salt marsh over an annual growth cycle of S. alterniflora by exploring the diversity of a functional gene, dissimilatory sulfite reductase (dsrAB). Because the dsrAB gene is a key gene in the anaerobic sulfate‐respiration pathway, it allows the identification of microorganisms responsible for sulfate reduction. Conserved dsrAB primers in polymerase chain reaction (PCR) generated full‐length dsrAB amplicons for cloning and DNA sequence analysis. Nearly 80% of 380 clone sequences were similar to genes from Desulfosarcina and Desulfobacterium species within Desulfobacteraceae. This reinforces the hypothesis that complete oxidizers with high substrate versatility dominate the marsh. However, the phylotypes formed several clades that were distinct from cultured representatives, indicating a greater diversity of SRB than previously appreciated. Several dsrAB sequences were related to homologues from Gram‐positive, thermophilic and non‐thermophilic Desulfotomaculum species. One dsrAB lineage formed a sister group to cultured members of the delta‐proteobacterial group Syntrophobacteraceae. A deeply branching dsrAB lineage was not affiliated with genes from any cultured SRB. The sequence data from this study will allow for the design of probes or primers that can quantitatively assess the diverse range of sulfate reducers present in the environment.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>16011754</pmid><doi>10.1111/j.1462-2920.2005.00796.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2005-08, Vol.7 (8), p.1175-1185
issn 1462-2912
1462-2920
language eng
recordid cdi_proquest_miscellaneous_68029130
source Wiley-Blackwell Read & Publish Collection
subjects Cloning, Molecular
Deltaproteobacteria - classification
Deltaproteobacteria - enzymology
Deltaproteobacteria - genetics
DNA, Bacterial - analysis
Geologic Sediments - microbiology
Molecular Sequence Data
New England
Oxidoreductases Acting on Sulfur Group Donors - genetics
Peptococcaceae - classification
Peptococcaceae - enzymology
Peptococcaceae - genetics
Poaceae
Polymerase Chain Reaction
Seawater - microbiology
Sequence Analysis, DNA
Sulfates
Sulfur-Reducing Bacteria - classification
Sulfur-Reducing Bacteria - enzymology
Sulfur-Reducing Bacteria - genetics
title Molecular characterization of sulfate-reducing bacteria in a New England salt marsh
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A06%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20characterization%20of%20sulfate-reducing%20bacteria%20in%20a%20New%20England%20salt%20marsh&rft.jtitle=Environmental%20microbiology&rft.au=Bahr,%20Michele&rft.date=2005-08&rft.volume=7&rft.issue=8&rft.spage=1175&rft.epage=1185&rft.pages=1175-1185&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/j.1462-2920.2005.00796.x&rft_dat=%3Cproquest_cross%3E68029130%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5516-d8d178692590bb52d47c9b0bcc39307de7779bfffaa9d1cdf05a342c22bb0ad93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17643310&rft_id=info:pmid/16011754&rfr_iscdi=true