Loading…
Molecular characterization of sulfate-reducing bacteria in a New England salt marsh
Summary Sulfate reduction, mediated by sulfate‐reducing bacteria (SRB), is the dominant remineralization pathway in sediments of New England salt marshes. High sulfate reduction rates are associated with the rhizosphere of Spartina alterniflora when plants elongate aboveground. The growth process co...
Saved in:
Published in: | Environmental microbiology 2005-08, Vol.7 (8), p.1175-1185 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5516-d8d178692590bb52d47c9b0bcc39307de7779bfffaa9d1cdf05a342c22bb0ad93 |
---|---|
cites | cdi_FETCH-LOGICAL-c5516-d8d178692590bb52d47c9b0bcc39307de7779bfffaa9d1cdf05a342c22bb0ad93 |
container_end_page | 1185 |
container_issue | 8 |
container_start_page | 1175 |
container_title | Environmental microbiology |
container_volume | 7 |
creator | Bahr, Michele Crump, Byron C. Klepac-Ceraj, Vanja Teske, Andreas Sogin, Mitchell L. Hobbie, John E. |
description | Summary
Sulfate reduction, mediated by sulfate‐reducing bacteria (SRB), is the dominant remineralization pathway in sediments of New England salt marshes. High sulfate reduction rates are associated with the rhizosphere of Spartina alterniflora when plants elongate aboveground. The growth process concurrently produces significant amounts of new rhizome material belowground and the plants leak dissolved organic compounds. This study investigated the diversity of SRB in a salt marsh over an annual growth cycle of S. alterniflora by exploring the diversity of a functional gene, dissimilatory sulfite reductase (dsrAB). Because the dsrAB gene is a key gene in the anaerobic sulfate‐respiration pathway, it allows the identification of microorganisms responsible for sulfate reduction. Conserved dsrAB primers in polymerase chain reaction (PCR) generated full‐length dsrAB amplicons for cloning and DNA sequence analysis. Nearly 80% of 380 clone sequences were similar to genes from Desulfosarcina and Desulfobacterium species within Desulfobacteraceae. This reinforces the hypothesis that complete oxidizers with high substrate versatility dominate the marsh. However, the phylotypes formed several clades that were distinct from cultured representatives, indicating a greater diversity of SRB than previously appreciated. Several dsrAB sequences were related to homologues from Gram‐positive, thermophilic and non‐thermophilic Desulfotomaculum species. One dsrAB lineage formed a sister group to cultured members of the delta‐proteobacterial group Syntrophobacteraceae. A deeply branching dsrAB lineage was not affiliated with genes from any cultured SRB. The sequence data from this study will allow for the design of probes or primers that can quantitatively assess the diverse range of sulfate reducers present in the environment. |
doi_str_mv | 10.1111/j.1462-2920.2005.00796.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68029130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68029130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5516-d8d178692590bb52d47c9b0bcc39307de7779bfffaa9d1cdf05a342c22bb0ad93</originalsourceid><addsrcrecordid>eNqNkUtv1DAURi1ERUvhLyCv2CVc27E9lthAO7RVXyBALC2_0mbIJMVO1Gl_PQ4ZTZfFG1_J57v2PUYIEyhJXh9WJakELaiiUFIAXgJIJcrNC3SwO3i5qwndR69TWgEQySS8QvtEACGSVwfo-2XfBje2JmJ3a6JxQ4jNoxmavsN9jdPY1mYIRQx-dE13g-1MGNx02OCrcI-X3U1rOo-TaQe8NjHdvkF7tWlTeLvdD9HPL8sfR6fFxfXJ2dGni8JxTkThF57IhVCUK7CWU19JpyxY55hiIH2QUipb17UxyhPna-CGVdRRai0Yr9ghej_3vYv9nzGkQa-b5EKbnxP6MWmxgDw8g2dBIkXFGJnAxQy62KcUQ63vYpNnetAE9GRer_QkVU-C9WRe_zOvNzn6bnvHaNfBPwW3qjPwcQbumzY8_Hdjvbw8y0WOF3O8SUPY7OIm_tYi_yrXv65OtKDf-Nfj83P9mf0FJVGg6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17643310</pqid></control><display><type>article</type><title>Molecular characterization of sulfate-reducing bacteria in a New England salt marsh</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Bahr, Michele ; Crump, Byron C. ; Klepac-Ceraj, Vanja ; Teske, Andreas ; Sogin, Mitchell L. ; Hobbie, John E.</creator><creatorcontrib>Bahr, Michele ; Crump, Byron C. ; Klepac-Ceraj, Vanja ; Teske, Andreas ; Sogin, Mitchell L. ; Hobbie, John E.</creatorcontrib><description>Summary
Sulfate reduction, mediated by sulfate‐reducing bacteria (SRB), is the dominant remineralization pathway in sediments of New England salt marshes. High sulfate reduction rates are associated with the rhizosphere of Spartina alterniflora when plants elongate aboveground. The growth process concurrently produces significant amounts of new rhizome material belowground and the plants leak dissolved organic compounds. This study investigated the diversity of SRB in a salt marsh over an annual growth cycle of S. alterniflora by exploring the diversity of a functional gene, dissimilatory sulfite reductase (dsrAB). Because the dsrAB gene is a key gene in the anaerobic sulfate‐respiration pathway, it allows the identification of microorganisms responsible for sulfate reduction. Conserved dsrAB primers in polymerase chain reaction (PCR) generated full‐length dsrAB amplicons for cloning and DNA sequence analysis. Nearly 80% of 380 clone sequences were similar to genes from Desulfosarcina and Desulfobacterium species within Desulfobacteraceae. This reinforces the hypothesis that complete oxidizers with high substrate versatility dominate the marsh. However, the phylotypes formed several clades that were distinct from cultured representatives, indicating a greater diversity of SRB than previously appreciated. Several dsrAB sequences were related to homologues from Gram‐positive, thermophilic and non‐thermophilic Desulfotomaculum species. One dsrAB lineage formed a sister group to cultured members of the delta‐proteobacterial group Syntrophobacteraceae. A deeply branching dsrAB lineage was not affiliated with genes from any cultured SRB. The sequence data from this study will allow for the design of probes or primers that can quantitatively assess the diverse range of sulfate reducers present in the environment.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/j.1462-2920.2005.00796.x</identifier><identifier>PMID: 16011754</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Cloning, Molecular ; Deltaproteobacteria - classification ; Deltaproteobacteria - enzymology ; Deltaproteobacteria - genetics ; DNA, Bacterial - analysis ; Geologic Sediments - microbiology ; Molecular Sequence Data ; New England ; Oxidoreductases Acting on Sulfur Group Donors - genetics ; Peptococcaceae - classification ; Peptococcaceae - enzymology ; Peptococcaceae - genetics ; Poaceae ; Polymerase Chain Reaction ; Seawater - microbiology ; Sequence Analysis, DNA ; Sulfates ; Sulfur-Reducing Bacteria - classification ; Sulfur-Reducing Bacteria - enzymology ; Sulfur-Reducing Bacteria - genetics</subject><ispartof>Environmental microbiology, 2005-08, Vol.7 (8), p.1175-1185</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5516-d8d178692590bb52d47c9b0bcc39307de7779bfffaa9d1cdf05a342c22bb0ad93</citedby><cites>FETCH-LOGICAL-c5516-d8d178692590bb52d47c9b0bcc39307de7779bfffaa9d1cdf05a342c22bb0ad93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16011754$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bahr, Michele</creatorcontrib><creatorcontrib>Crump, Byron C.</creatorcontrib><creatorcontrib>Klepac-Ceraj, Vanja</creatorcontrib><creatorcontrib>Teske, Andreas</creatorcontrib><creatorcontrib>Sogin, Mitchell L.</creatorcontrib><creatorcontrib>Hobbie, John E.</creatorcontrib><title>Molecular characterization of sulfate-reducing bacteria in a New England salt marsh</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary
Sulfate reduction, mediated by sulfate‐reducing bacteria (SRB), is the dominant remineralization pathway in sediments of New England salt marshes. High sulfate reduction rates are associated with the rhizosphere of Spartina alterniflora when plants elongate aboveground. The growth process concurrently produces significant amounts of new rhizome material belowground and the plants leak dissolved organic compounds. This study investigated the diversity of SRB in a salt marsh over an annual growth cycle of S. alterniflora by exploring the diversity of a functional gene, dissimilatory sulfite reductase (dsrAB). Because the dsrAB gene is a key gene in the anaerobic sulfate‐respiration pathway, it allows the identification of microorganisms responsible for sulfate reduction. Conserved dsrAB primers in polymerase chain reaction (PCR) generated full‐length dsrAB amplicons for cloning and DNA sequence analysis. Nearly 80% of 380 clone sequences were similar to genes from Desulfosarcina and Desulfobacterium species within Desulfobacteraceae. This reinforces the hypothesis that complete oxidizers with high substrate versatility dominate the marsh. However, the phylotypes formed several clades that were distinct from cultured representatives, indicating a greater diversity of SRB than previously appreciated. Several dsrAB sequences were related to homologues from Gram‐positive, thermophilic and non‐thermophilic Desulfotomaculum species. One dsrAB lineage formed a sister group to cultured members of the delta‐proteobacterial group Syntrophobacteraceae. A deeply branching dsrAB lineage was not affiliated with genes from any cultured SRB. The sequence data from this study will allow for the design of probes or primers that can quantitatively assess the diverse range of sulfate reducers present in the environment.</description><subject>Cloning, Molecular</subject><subject>Deltaproteobacteria - classification</subject><subject>Deltaproteobacteria - enzymology</subject><subject>Deltaproteobacteria - genetics</subject><subject>DNA, Bacterial - analysis</subject><subject>Geologic Sediments - microbiology</subject><subject>Molecular Sequence Data</subject><subject>New England</subject><subject>Oxidoreductases Acting on Sulfur Group Donors - genetics</subject><subject>Peptococcaceae - classification</subject><subject>Peptococcaceae - enzymology</subject><subject>Peptococcaceae - genetics</subject><subject>Poaceae</subject><subject>Polymerase Chain Reaction</subject><subject>Seawater - microbiology</subject><subject>Sequence Analysis, DNA</subject><subject>Sulfates</subject><subject>Sulfur-Reducing Bacteria - classification</subject><subject>Sulfur-Reducing Bacteria - enzymology</subject><subject>Sulfur-Reducing Bacteria - genetics</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkUtv1DAURi1ERUvhLyCv2CVc27E9lthAO7RVXyBALC2_0mbIJMVO1Gl_PQ4ZTZfFG1_J57v2PUYIEyhJXh9WJakELaiiUFIAXgJIJcrNC3SwO3i5qwndR69TWgEQySS8QvtEACGSVwfo-2XfBje2JmJ3a6JxQ4jNoxmavsN9jdPY1mYIRQx-dE13g-1MGNx02OCrcI-X3U1rOo-TaQe8NjHdvkF7tWlTeLvdD9HPL8sfR6fFxfXJ2dGni8JxTkThF57IhVCUK7CWU19JpyxY55hiIH2QUipb17UxyhPna-CGVdRRai0Yr9ghej_3vYv9nzGkQa-b5EKbnxP6MWmxgDw8g2dBIkXFGJnAxQy62KcUQ63vYpNnetAE9GRer_QkVU-C9WRe_zOvNzn6bnvHaNfBPwW3qjPwcQbumzY8_Hdjvbw8y0WOF3O8SUPY7OIm_tYi_yrXv65OtKDf-Nfj83P9mf0FJVGg6w</recordid><startdate>200508</startdate><enddate>200508</enddate><creator>Bahr, Michele</creator><creator>Crump, Byron C.</creator><creator>Klepac-Ceraj, Vanja</creator><creator>Teske, Andreas</creator><creator>Sogin, Mitchell L.</creator><creator>Hobbie, John E.</creator><general>Blackwell Science Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>200508</creationdate><title>Molecular characterization of sulfate-reducing bacteria in a New England salt marsh</title><author>Bahr, Michele ; Crump, Byron C. ; Klepac-Ceraj, Vanja ; Teske, Andreas ; Sogin, Mitchell L. ; Hobbie, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5516-d8d178692590bb52d47c9b0bcc39307de7779bfffaa9d1cdf05a342c22bb0ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Cloning, Molecular</topic><topic>Deltaproteobacteria - classification</topic><topic>Deltaproteobacteria - enzymology</topic><topic>Deltaproteobacteria - genetics</topic><topic>DNA, Bacterial - analysis</topic><topic>Geologic Sediments - microbiology</topic><topic>Molecular Sequence Data</topic><topic>New England</topic><topic>Oxidoreductases Acting on Sulfur Group Donors - genetics</topic><topic>Peptococcaceae - classification</topic><topic>Peptococcaceae - enzymology</topic><topic>Peptococcaceae - genetics</topic><topic>Poaceae</topic><topic>Polymerase Chain Reaction</topic><topic>Seawater - microbiology</topic><topic>Sequence Analysis, DNA</topic><topic>Sulfates</topic><topic>Sulfur-Reducing Bacteria - classification</topic><topic>Sulfur-Reducing Bacteria - enzymology</topic><topic>Sulfur-Reducing Bacteria - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahr, Michele</creatorcontrib><creatorcontrib>Crump, Byron C.</creatorcontrib><creatorcontrib>Klepac-Ceraj, Vanja</creatorcontrib><creatorcontrib>Teske, Andreas</creatorcontrib><creatorcontrib>Sogin, Mitchell L.</creatorcontrib><creatorcontrib>Hobbie, John E.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahr, Michele</au><au>Crump, Byron C.</au><au>Klepac-Ceraj, Vanja</au><au>Teske, Andreas</au><au>Sogin, Mitchell L.</au><au>Hobbie, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular characterization of sulfate-reducing bacteria in a New England salt marsh</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2005-08</date><risdate>2005</risdate><volume>7</volume><issue>8</issue><spage>1175</spage><epage>1185</epage><pages>1175-1185</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary
Sulfate reduction, mediated by sulfate‐reducing bacteria (SRB), is the dominant remineralization pathway in sediments of New England salt marshes. High sulfate reduction rates are associated with the rhizosphere of Spartina alterniflora when plants elongate aboveground. The growth process concurrently produces significant amounts of new rhizome material belowground and the plants leak dissolved organic compounds. This study investigated the diversity of SRB in a salt marsh over an annual growth cycle of S. alterniflora by exploring the diversity of a functional gene, dissimilatory sulfite reductase (dsrAB). Because the dsrAB gene is a key gene in the anaerobic sulfate‐respiration pathway, it allows the identification of microorganisms responsible for sulfate reduction. Conserved dsrAB primers in polymerase chain reaction (PCR) generated full‐length dsrAB amplicons for cloning and DNA sequence analysis. Nearly 80% of 380 clone sequences were similar to genes from Desulfosarcina and Desulfobacterium species within Desulfobacteraceae. This reinforces the hypothesis that complete oxidizers with high substrate versatility dominate the marsh. However, the phylotypes formed several clades that were distinct from cultured representatives, indicating a greater diversity of SRB than previously appreciated. Several dsrAB sequences were related to homologues from Gram‐positive, thermophilic and non‐thermophilic Desulfotomaculum species. One dsrAB lineage formed a sister group to cultured members of the delta‐proteobacterial group Syntrophobacteraceae. A deeply branching dsrAB lineage was not affiliated with genes from any cultured SRB. The sequence data from this study will allow for the design of probes or primers that can quantitatively assess the diverse range of sulfate reducers present in the environment.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>16011754</pmid><doi>10.1111/j.1462-2920.2005.00796.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-2912 |
ispartof | Environmental microbiology, 2005-08, Vol.7 (8), p.1175-1185 |
issn | 1462-2912 1462-2920 |
language | eng |
recordid | cdi_proquest_miscellaneous_68029130 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Cloning, Molecular Deltaproteobacteria - classification Deltaproteobacteria - enzymology Deltaproteobacteria - genetics DNA, Bacterial - analysis Geologic Sediments - microbiology Molecular Sequence Data New England Oxidoreductases Acting on Sulfur Group Donors - genetics Peptococcaceae - classification Peptococcaceae - enzymology Peptococcaceae - genetics Poaceae Polymerase Chain Reaction Seawater - microbiology Sequence Analysis, DNA Sulfates Sulfur-Reducing Bacteria - classification Sulfur-Reducing Bacteria - enzymology Sulfur-Reducing Bacteria - genetics |
title | Molecular characterization of sulfate-reducing bacteria in a New England salt marsh |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A06%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20characterization%20of%20sulfate-reducing%20bacteria%20in%20a%20New%20England%20salt%20marsh&rft.jtitle=Environmental%20microbiology&rft.au=Bahr,%20Michele&rft.date=2005-08&rft.volume=7&rft.issue=8&rft.spage=1175&rft.epage=1185&rft.pages=1175-1185&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/j.1462-2920.2005.00796.x&rft_dat=%3Cproquest_cross%3E68029130%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5516-d8d178692590bb52d47c9b0bcc39307de7779bfffaa9d1cdf05a342c22bb0ad93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17643310&rft_id=info:pmid/16011754&rfr_iscdi=true |