Loading…

Local Sequence Information‐based Support Vector Machine to Classify Voltage‐gated Potassium Channels

In our previous work, we developed a computational tool, PreK‐ClassK‐ClassKv, to predict and classify potassium (K+) channels. For K+ channel prediction (PreK) and classification at family level (ClassK), this method performs well. However, it does not perform so well in classifying voltage‐gated po...

Full description

Saved in:
Bibliographic Details
Published in:Acta biochimica et biophysica Sinica 2006-06, Vol.38 (6), p.363-371
Main Authors: LIU, Li‐Xia, LI, Meng‐Long, TAN, Fu‐Yuan, LU, Min‐Chun, WANG, Ke‐Long, GUO, Yan‐Zhi, WEN, Zhi‐Ning, JIANG, Lin
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4177-3e5b074921b14c6704c3f446bfaaee8cb3fa0adf4d89fd94fbcaf6f1a2ca6a643
cites
container_end_page 371
container_issue 6
container_start_page 363
container_title Acta biochimica et biophysica Sinica
container_volume 38
creator LIU, Li‐Xia
LI, Meng‐Long
TAN, Fu‐Yuan
LU, Min‐Chun
WANG, Ke‐Long
GUO, Yan‐Zhi
WEN, Zhi‐Ning
JIANG, Lin
description In our previous work, we developed a computational tool, PreK‐ClassK‐ClassKv, to predict and classify potassium (K+) channels. For K+ channel prediction (PreK) and classification at family level (ClassK), this method performs well. However, it does not perform so well in classifying voltage‐gated potassium (Kv) channels (ClassKv). In this paper, a new method based on the local sequence information of Kv channels is introduced to classify Kv channels. Six transmembrane domains of a Kv channel protein are used to define a protein, and the dipeptide composition technique is used to transform an amino acid sequence to a numerical sequence. A Kv channel protein is represented by a vector with 2000 elements, and a support vector machine algorithm is applied to classify Kv channels. This method shows good performance with averages of total accuracy (Acc), sensitivity (SE), specificity (SP), reliability (R) and Matthews correlation coefficient (MCC) of 98.0%, 89.9%, 100%, 0.95 and 0.94 respectively. The results indicate that the local sequence information‐based method is better than the global sequence information‐based method to classify Kv channels. Edited by
Juan LIU
doi_str_mv 10.1111/j.1745-7270.2006.00177.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68053475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68053475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4177-3e5b074921b14c6704c3f446bfaaee8cb3fa0adf4d89fd94fbcaf6f1a2ca6a643</originalsourceid><addsrcrecordid>eNqNkEFu2zAQRYkiQeOkvULBVXdSSIkirUUXtpG2ARwkgNNsiRE1tGVIoiNKSLzrEXrGniRUbCTbcMMP_P9nMI8QylnMw7vcxlyJLFKJYnHCmIwZ40rFz5_I5M04CVqqJMq5yM7IufdbxlIpOftMzoIRRJ5OyGbpDNR0hY8DtgbpdWtd10Bfufb_338FeCzpatjtXNfTBzS96-gNmE3VIu0dXdTgfWX39MHVPawxVNbQh8qd60dnaOhiA22Ltf9CTi3UHr8e_wvy5-fV_eJ3tLz9db2YLSMjwglRilnBlMgTXnBhpGLCpFYIWVgAxKkpUgsMSivKaW7LXNjCgJWWQ2JAghTpBfl-mLvrXLjJ97qpvMG6hhbd4LWcsiwVKgvB6SFoOud9h1bvuqqBbq850yNlvdUjTD3C1CNl_UpZP4fqt-OOoWiwfC8esYbAj0Pgqapx_-HBejafr4JKXwCcb4-v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68053475</pqid></control><display><type>article</type><title>Local Sequence Information‐based Support Vector Machine to Classify Voltage‐gated Potassium Channels</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>LIU, Li‐Xia ; LI, Meng‐Long ; TAN, Fu‐Yuan ; LU, Min‐Chun ; WANG, Ke‐Long ; GUO, Yan‐Zhi ; WEN, Zhi‐Ning ; JIANG, Lin</creator><creatorcontrib>LIU, Li‐Xia ; LI, Meng‐Long ; TAN, Fu‐Yuan ; LU, Min‐Chun ; WANG, Ke‐Long ; GUO, Yan‐Zhi ; WEN, Zhi‐Ning ; JIANG, Lin</creatorcontrib><description>In our previous work, we developed a computational tool, PreK‐ClassK‐ClassKv, to predict and classify potassium (K+) channels. For K+ channel prediction (PreK) and classification at family level (ClassK), this method performs well. However, it does not perform so well in classifying voltage‐gated potassium (Kv) channels (ClassKv). In this paper, a new method based on the local sequence information of Kv channels is introduced to classify Kv channels. Six transmembrane domains of a Kv channel protein are used to define a protein, and the dipeptide composition technique is used to transform an amino acid sequence to a numerical sequence. A Kv channel protein is represented by a vector with 2000 elements, and a support vector machine algorithm is applied to classify Kv channels. This method shows good performance with averages of total accuracy (Acc), sensitivity (SE), specificity (SP), reliability (R) and Matthews correlation coefficient (MCC) of 98.0%, 89.9%, 100%, 0.95 and 0.94 respectively. The results indicate that the local sequence information‐based method is better than the global sequence information‐based method to classify Kv channels. Edited by
Juan LIU</description><identifier>ISSN: 1672-9145</identifier><identifier>EISSN: 1745-7270</identifier><identifier>DOI: 10.1111/j.1745-7270.2006.00177.x</identifier><identifier>PMID: 16761093</identifier><language>eng</language><publisher>Melbourne, Australia: Blackwell Publishing Asia</publisher><subject>Algorithms ; Animals ; Artificial Intelligence ; classification ; Computational Biology - methods ; dipeptide composition ; Humans ; Models, Biological ; Models, Statistical ; Peptides - chemistry ; Potassium Channels, Voltage-Gated - classification ; Potassium Channels, Voltage-Gated - genetics ; Reproducibility of Results ; Sensitivity and Specificity ; Sequence Alignment ; Sequence Analysis, Protein - methods ; support vector machine ; transmembrane domain ; voltage‐gated potassium channel</subject><ispartof>Acta biochimica et biophysica Sinica, 2006-06, Vol.38 (6), p.363-371</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4177-3e5b074921b14c6704c3f446bfaaee8cb3fa0adf4d89fd94fbcaf6f1a2ca6a643</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16761093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LIU, Li‐Xia</creatorcontrib><creatorcontrib>LI, Meng‐Long</creatorcontrib><creatorcontrib>TAN, Fu‐Yuan</creatorcontrib><creatorcontrib>LU, Min‐Chun</creatorcontrib><creatorcontrib>WANG, Ke‐Long</creatorcontrib><creatorcontrib>GUO, Yan‐Zhi</creatorcontrib><creatorcontrib>WEN, Zhi‐Ning</creatorcontrib><creatorcontrib>JIANG, Lin</creatorcontrib><title>Local Sequence Information‐based Support Vector Machine to Classify Voltage‐gated Potassium Channels</title><title>Acta biochimica et biophysica Sinica</title><addtitle>Acta Biochim Biophys Sin (Shanghai)</addtitle><description>In our previous work, we developed a computational tool, PreK‐ClassK‐ClassKv, to predict and classify potassium (K+) channels. For K+ channel prediction (PreK) and classification at family level (ClassK), this method performs well. However, it does not perform so well in classifying voltage‐gated potassium (Kv) channels (ClassKv). In this paper, a new method based on the local sequence information of Kv channels is introduced to classify Kv channels. Six transmembrane domains of a Kv channel protein are used to define a protein, and the dipeptide composition technique is used to transform an amino acid sequence to a numerical sequence. A Kv channel protein is represented by a vector with 2000 elements, and a support vector machine algorithm is applied to classify Kv channels. This method shows good performance with averages of total accuracy (Acc), sensitivity (SE), specificity (SP), reliability (R) and Matthews correlation coefficient (MCC) of 98.0%, 89.9%, 100%, 0.95 and 0.94 respectively. The results indicate that the local sequence information‐based method is better than the global sequence information‐based method to classify Kv channels. Edited by
Juan LIU</description><subject>Algorithms</subject><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>classification</subject><subject>Computational Biology - methods</subject><subject>dipeptide composition</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Peptides - chemistry</subject><subject>Potassium Channels, Voltage-Gated - classification</subject><subject>Potassium Channels, Voltage-Gated - genetics</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, Protein - methods</subject><subject>support vector machine</subject><subject>transmembrane domain</subject><subject>voltage‐gated potassium channel</subject><issn>1672-9145</issn><issn>1745-7270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkEFu2zAQRYkiQeOkvULBVXdSSIkirUUXtpG2ARwkgNNsiRE1tGVIoiNKSLzrEXrGniRUbCTbcMMP_P9nMI8QylnMw7vcxlyJLFKJYnHCmIwZ40rFz5_I5M04CVqqJMq5yM7IufdbxlIpOftMzoIRRJ5OyGbpDNR0hY8DtgbpdWtd10Bfufb_338FeCzpatjtXNfTBzS96-gNmE3VIu0dXdTgfWX39MHVPawxVNbQh8qd60dnaOhiA22Ltf9CTi3UHr8e_wvy5-fV_eJ3tLz9db2YLSMjwglRilnBlMgTXnBhpGLCpFYIWVgAxKkpUgsMSivKaW7LXNjCgJWWQ2JAghTpBfl-mLvrXLjJ97qpvMG6hhbd4LWcsiwVKgvB6SFoOud9h1bvuqqBbq850yNlvdUjTD3C1CNl_UpZP4fqt-OOoWiwfC8esYbAj0Pgqapx_-HBejafr4JKXwCcb4-v</recordid><startdate>200606</startdate><enddate>200606</enddate><creator>LIU, Li‐Xia</creator><creator>LI, Meng‐Long</creator><creator>TAN, Fu‐Yuan</creator><creator>LU, Min‐Chun</creator><creator>WANG, Ke‐Long</creator><creator>GUO, Yan‐Zhi</creator><creator>WEN, Zhi‐Ning</creator><creator>JIANG, Lin</creator><general>Blackwell Publishing Asia</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200606</creationdate><title>Local Sequence Information‐based Support Vector Machine to Classify Voltage‐gated Potassium Channels</title><author>LIU, Li‐Xia ; LI, Meng‐Long ; TAN, Fu‐Yuan ; LU, Min‐Chun ; WANG, Ke‐Long ; GUO, Yan‐Zhi ; WEN, Zhi‐Ning ; JIANG, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4177-3e5b074921b14c6704c3f446bfaaee8cb3fa0adf4d89fd94fbcaf6f1a2ca6a643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>classification</topic><topic>Computational Biology - methods</topic><topic>dipeptide composition</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Peptides - chemistry</topic><topic>Potassium Channels, Voltage-Gated - classification</topic><topic>Potassium Channels, Voltage-Gated - genetics</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, Protein - methods</topic><topic>support vector machine</topic><topic>transmembrane domain</topic><topic>voltage‐gated potassium channel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIU, Li‐Xia</creatorcontrib><creatorcontrib>LI, Meng‐Long</creatorcontrib><creatorcontrib>TAN, Fu‐Yuan</creatorcontrib><creatorcontrib>LU, Min‐Chun</creatorcontrib><creatorcontrib>WANG, Ke‐Long</creatorcontrib><creatorcontrib>GUO, Yan‐Zhi</creatorcontrib><creatorcontrib>WEN, Zhi‐Ning</creatorcontrib><creatorcontrib>JIANG, Lin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biochimica et biophysica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIU, Li‐Xia</au><au>LI, Meng‐Long</au><au>TAN, Fu‐Yuan</au><au>LU, Min‐Chun</au><au>WANG, Ke‐Long</au><au>GUO, Yan‐Zhi</au><au>WEN, Zhi‐Ning</au><au>JIANG, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Sequence Information‐based Support Vector Machine to Classify Voltage‐gated Potassium Channels</atitle><jtitle>Acta biochimica et biophysica Sinica</jtitle><addtitle>Acta Biochim Biophys Sin (Shanghai)</addtitle><date>2006-06</date><risdate>2006</risdate><volume>38</volume><issue>6</issue><spage>363</spage><epage>371</epage><pages>363-371</pages><issn>1672-9145</issn><eissn>1745-7270</eissn><abstract>In our previous work, we developed a computational tool, PreK‐ClassK‐ClassKv, to predict and classify potassium (K+) channels. For K+ channel prediction (PreK) and classification at family level (ClassK), this method performs well. However, it does not perform so well in classifying voltage‐gated potassium (Kv) channels (ClassKv). In this paper, a new method based on the local sequence information of Kv channels is introduced to classify Kv channels. Six transmembrane domains of a Kv channel protein are used to define a protein, and the dipeptide composition technique is used to transform an amino acid sequence to a numerical sequence. A Kv channel protein is represented by a vector with 2000 elements, and a support vector machine algorithm is applied to classify Kv channels. This method shows good performance with averages of total accuracy (Acc), sensitivity (SE), specificity (SP), reliability (R) and Matthews correlation coefficient (MCC) of 98.0%, 89.9%, 100%, 0.95 and 0.94 respectively. The results indicate that the local sequence information‐based method is better than the global sequence information‐based method to classify Kv channels. Edited by
Juan LIU</abstract><cop>Melbourne, Australia</cop><pub>Blackwell Publishing Asia</pub><pmid>16761093</pmid><doi>10.1111/j.1745-7270.2006.00177.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1672-9145
ispartof Acta biochimica et biophysica Sinica, 2006-06, Vol.38 (6), p.363-371
issn 1672-9145
1745-7270
language eng
recordid cdi_proquest_miscellaneous_68053475
source EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Animals
Artificial Intelligence
classification
Computational Biology - methods
dipeptide composition
Humans
Models, Biological
Models, Statistical
Peptides - chemistry
Potassium Channels, Voltage-Gated - classification
Potassium Channels, Voltage-Gated - genetics
Reproducibility of Results
Sensitivity and Specificity
Sequence Alignment
Sequence Analysis, Protein - methods
support vector machine
transmembrane domain
voltage‐gated potassium channel
title Local Sequence Information‐based Support Vector Machine to Classify Voltage‐gated Potassium Channels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A17%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Sequence%20Information%E2%80%90based%20Support%20Vector%20Machine%20to%20Classify%20Voltage%E2%80%90gated%20Potassium%20Channels&rft.jtitle=Acta%20biochimica%20et%20biophysica%20Sinica&rft.au=LIU,%20Li%E2%80%90Xia&rft.date=2006-06&rft.volume=38&rft.issue=6&rft.spage=363&rft.epage=371&rft.pages=363-371&rft.issn=1672-9145&rft.eissn=1745-7270&rft_id=info:doi/10.1111/j.1745-7270.2006.00177.x&rft_dat=%3Cproquest_cross%3E68053475%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4177-3e5b074921b14c6704c3f446bfaaee8cb3fa0adf4d89fd94fbcaf6f1a2ca6a643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68053475&rft_id=info:pmid/16761093&rfr_iscdi=true