Loading…
Local Sequence Information‐based Support Vector Machine to Classify Voltage‐gated Potassium Channels
In our previous work, we developed a computational tool, PreK‐ClassK‐ClassKv, to predict and classify potassium (K+) channels. For K+ channel prediction (PreK) and classification at family level (ClassK), this method performs well. However, it does not perform so well in classifying voltage‐gated po...
Saved in:
Published in: | Acta biochimica et biophysica Sinica 2006-06, Vol.38 (6), p.363-371 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4177-3e5b074921b14c6704c3f446bfaaee8cb3fa0adf4d89fd94fbcaf6f1a2ca6a643 |
---|---|
cites | |
container_end_page | 371 |
container_issue | 6 |
container_start_page | 363 |
container_title | Acta biochimica et biophysica Sinica |
container_volume | 38 |
creator | LIU, Li‐Xia LI, Meng‐Long TAN, Fu‐Yuan LU, Min‐Chun WANG, Ke‐Long GUO, Yan‐Zhi WEN, Zhi‐Ning JIANG, Lin |
description | In our previous work, we developed a computational tool, PreK‐ClassK‐ClassKv, to predict and classify potassium (K+) channels. For K+ channel prediction (PreK) and classification at family level (ClassK), this method performs well. However, it does not perform so well in classifying voltage‐gated potassium (Kv) channels (ClassKv). In this paper, a new method based on the local sequence information of Kv channels is introduced to classify Kv channels. Six transmembrane domains of a Kv channel protein are used to define a protein, and the dipeptide composition technique is used to transform an amino acid sequence to a numerical sequence. A Kv channel protein is represented by a vector with 2000 elements, and a support vector machine algorithm is applied to classify Kv channels. This method shows good performance with averages of total accuracy (Acc), sensitivity (SE), specificity (SP), reliability (R) and Matthews correlation coefficient (MCC) of 98.0%, 89.9%, 100%, 0.95 and 0.94 respectively. The results indicate that the local sequence information‐based method is better than the global sequence information‐based method to classify Kv channels.
Edited by
Juan LIU |
doi_str_mv | 10.1111/j.1745-7270.2006.00177.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68053475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68053475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4177-3e5b074921b14c6704c3f446bfaaee8cb3fa0adf4d89fd94fbcaf6f1a2ca6a643</originalsourceid><addsrcrecordid>eNqNkEFu2zAQRYkiQeOkvULBVXdSSIkirUUXtpG2ARwkgNNsiRE1tGVIoiNKSLzrEXrGniRUbCTbcMMP_P9nMI8QylnMw7vcxlyJLFKJYnHCmIwZ40rFz5_I5M04CVqqJMq5yM7IufdbxlIpOftMzoIRRJ5OyGbpDNR0hY8DtgbpdWtd10Bfufb_338FeCzpatjtXNfTBzS96-gNmE3VIu0dXdTgfWX39MHVPawxVNbQh8qd60dnaOhiA22Ltf9CTi3UHr8e_wvy5-fV_eJ3tLz9db2YLSMjwglRilnBlMgTXnBhpGLCpFYIWVgAxKkpUgsMSivKaW7LXNjCgJWWQ2JAghTpBfl-mLvrXLjJ97qpvMG6hhbd4LWcsiwVKgvB6SFoOud9h1bvuqqBbq850yNlvdUjTD3C1CNl_UpZP4fqt-OOoWiwfC8esYbAj0Pgqapx_-HBejafr4JKXwCcb4-v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68053475</pqid></control><display><type>article</type><title>Local Sequence Information‐based Support Vector Machine to Classify Voltage‐gated Potassium Channels</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>LIU, Li‐Xia ; LI, Meng‐Long ; TAN, Fu‐Yuan ; LU, Min‐Chun ; WANG, Ke‐Long ; GUO, Yan‐Zhi ; WEN, Zhi‐Ning ; JIANG, Lin</creator><creatorcontrib>LIU, Li‐Xia ; LI, Meng‐Long ; TAN, Fu‐Yuan ; LU, Min‐Chun ; WANG, Ke‐Long ; GUO, Yan‐Zhi ; WEN, Zhi‐Ning ; JIANG, Lin</creatorcontrib><description>In our previous work, we developed a computational tool, PreK‐ClassK‐ClassKv, to predict and classify potassium (K+) channels. For K+ channel prediction (PreK) and classification at family level (ClassK), this method performs well. However, it does not perform so well in classifying voltage‐gated potassium (Kv) channels (ClassKv). In this paper, a new method based on the local sequence information of Kv channels is introduced to classify Kv channels. Six transmembrane domains of a Kv channel protein are used to define a protein, and the dipeptide composition technique is used to transform an amino acid sequence to a numerical sequence. A Kv channel protein is represented by a vector with 2000 elements, and a support vector machine algorithm is applied to classify Kv channels. This method shows good performance with averages of total accuracy (Acc), sensitivity (SE), specificity (SP), reliability (R) and Matthews correlation coefficient (MCC) of 98.0%, 89.9%, 100%, 0.95 and 0.94 respectively. The results indicate that the local sequence information‐based method is better than the global sequence information‐based method to classify Kv channels.
Edited by
Juan LIU</description><identifier>ISSN: 1672-9145</identifier><identifier>EISSN: 1745-7270</identifier><identifier>DOI: 10.1111/j.1745-7270.2006.00177.x</identifier><identifier>PMID: 16761093</identifier><language>eng</language><publisher>Melbourne, Australia: Blackwell Publishing Asia</publisher><subject>Algorithms ; Animals ; Artificial Intelligence ; classification ; Computational Biology - methods ; dipeptide composition ; Humans ; Models, Biological ; Models, Statistical ; Peptides - chemistry ; Potassium Channels, Voltage-Gated - classification ; Potassium Channels, Voltage-Gated - genetics ; Reproducibility of Results ; Sensitivity and Specificity ; Sequence Alignment ; Sequence Analysis, Protein - methods ; support vector machine ; transmembrane domain ; voltage‐gated potassium channel</subject><ispartof>Acta biochimica et biophysica Sinica, 2006-06, Vol.38 (6), p.363-371</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4177-3e5b074921b14c6704c3f446bfaaee8cb3fa0adf4d89fd94fbcaf6f1a2ca6a643</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16761093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LIU, Li‐Xia</creatorcontrib><creatorcontrib>LI, Meng‐Long</creatorcontrib><creatorcontrib>TAN, Fu‐Yuan</creatorcontrib><creatorcontrib>LU, Min‐Chun</creatorcontrib><creatorcontrib>WANG, Ke‐Long</creatorcontrib><creatorcontrib>GUO, Yan‐Zhi</creatorcontrib><creatorcontrib>WEN, Zhi‐Ning</creatorcontrib><creatorcontrib>JIANG, Lin</creatorcontrib><title>Local Sequence Information‐based Support Vector Machine to Classify Voltage‐gated Potassium Channels</title><title>Acta biochimica et biophysica Sinica</title><addtitle>Acta Biochim Biophys Sin (Shanghai)</addtitle><description>In our previous work, we developed a computational tool, PreK‐ClassK‐ClassKv, to predict and classify potassium (K+) channels. For K+ channel prediction (PreK) and classification at family level (ClassK), this method performs well. However, it does not perform so well in classifying voltage‐gated potassium (Kv) channels (ClassKv). In this paper, a new method based on the local sequence information of Kv channels is introduced to classify Kv channels. Six transmembrane domains of a Kv channel protein are used to define a protein, and the dipeptide composition technique is used to transform an amino acid sequence to a numerical sequence. A Kv channel protein is represented by a vector with 2000 elements, and a support vector machine algorithm is applied to classify Kv channels. This method shows good performance with averages of total accuracy (Acc), sensitivity (SE), specificity (SP), reliability (R) and Matthews correlation coefficient (MCC) of 98.0%, 89.9%, 100%, 0.95 and 0.94 respectively. The results indicate that the local sequence information‐based method is better than the global sequence information‐based method to classify Kv channels.
Edited by
Juan LIU</description><subject>Algorithms</subject><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>classification</subject><subject>Computational Biology - methods</subject><subject>dipeptide composition</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Peptides - chemistry</subject><subject>Potassium Channels, Voltage-Gated - classification</subject><subject>Potassium Channels, Voltage-Gated - genetics</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, Protein - methods</subject><subject>support vector machine</subject><subject>transmembrane domain</subject><subject>voltage‐gated potassium channel</subject><issn>1672-9145</issn><issn>1745-7270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkEFu2zAQRYkiQeOkvULBVXdSSIkirUUXtpG2ARwkgNNsiRE1tGVIoiNKSLzrEXrGniRUbCTbcMMP_P9nMI8QylnMw7vcxlyJLFKJYnHCmIwZ40rFz5_I5M04CVqqJMq5yM7IufdbxlIpOftMzoIRRJ5OyGbpDNR0hY8DtgbpdWtd10Bfufb_338FeCzpatjtXNfTBzS96-gNmE3VIu0dXdTgfWX39MHVPawxVNbQh8qd60dnaOhiA22Ltf9CTi3UHr8e_wvy5-fV_eJ3tLz9db2YLSMjwglRilnBlMgTXnBhpGLCpFYIWVgAxKkpUgsMSivKaW7LXNjCgJWWQ2JAghTpBfl-mLvrXLjJ97qpvMG6hhbd4LWcsiwVKgvB6SFoOud9h1bvuqqBbq850yNlvdUjTD3C1CNl_UpZP4fqt-OOoWiwfC8esYbAj0Pgqapx_-HBejafr4JKXwCcb4-v</recordid><startdate>200606</startdate><enddate>200606</enddate><creator>LIU, Li‐Xia</creator><creator>LI, Meng‐Long</creator><creator>TAN, Fu‐Yuan</creator><creator>LU, Min‐Chun</creator><creator>WANG, Ke‐Long</creator><creator>GUO, Yan‐Zhi</creator><creator>WEN, Zhi‐Ning</creator><creator>JIANG, Lin</creator><general>Blackwell Publishing Asia</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200606</creationdate><title>Local Sequence Information‐based Support Vector Machine to Classify Voltage‐gated Potassium Channels</title><author>LIU, Li‐Xia ; LI, Meng‐Long ; TAN, Fu‐Yuan ; LU, Min‐Chun ; WANG, Ke‐Long ; GUO, Yan‐Zhi ; WEN, Zhi‐Ning ; JIANG, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4177-3e5b074921b14c6704c3f446bfaaee8cb3fa0adf4d89fd94fbcaf6f1a2ca6a643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>classification</topic><topic>Computational Biology - methods</topic><topic>dipeptide composition</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Peptides - chemistry</topic><topic>Potassium Channels, Voltage-Gated - classification</topic><topic>Potassium Channels, Voltage-Gated - genetics</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, Protein - methods</topic><topic>support vector machine</topic><topic>transmembrane domain</topic><topic>voltage‐gated potassium channel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIU, Li‐Xia</creatorcontrib><creatorcontrib>LI, Meng‐Long</creatorcontrib><creatorcontrib>TAN, Fu‐Yuan</creatorcontrib><creatorcontrib>LU, Min‐Chun</creatorcontrib><creatorcontrib>WANG, Ke‐Long</creatorcontrib><creatorcontrib>GUO, Yan‐Zhi</creatorcontrib><creatorcontrib>WEN, Zhi‐Ning</creatorcontrib><creatorcontrib>JIANG, Lin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biochimica et biophysica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIU, Li‐Xia</au><au>LI, Meng‐Long</au><au>TAN, Fu‐Yuan</au><au>LU, Min‐Chun</au><au>WANG, Ke‐Long</au><au>GUO, Yan‐Zhi</au><au>WEN, Zhi‐Ning</au><au>JIANG, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Sequence Information‐based Support Vector Machine to Classify Voltage‐gated Potassium Channels</atitle><jtitle>Acta biochimica et biophysica Sinica</jtitle><addtitle>Acta Biochim Biophys Sin (Shanghai)</addtitle><date>2006-06</date><risdate>2006</risdate><volume>38</volume><issue>6</issue><spage>363</spage><epage>371</epage><pages>363-371</pages><issn>1672-9145</issn><eissn>1745-7270</eissn><abstract>In our previous work, we developed a computational tool, PreK‐ClassK‐ClassKv, to predict and classify potassium (K+) channels. For K+ channel prediction (PreK) and classification at family level (ClassK), this method performs well. However, it does not perform so well in classifying voltage‐gated potassium (Kv) channels (ClassKv). In this paper, a new method based on the local sequence information of Kv channels is introduced to classify Kv channels. Six transmembrane domains of a Kv channel protein are used to define a protein, and the dipeptide composition technique is used to transform an amino acid sequence to a numerical sequence. A Kv channel protein is represented by a vector with 2000 elements, and a support vector machine algorithm is applied to classify Kv channels. This method shows good performance with averages of total accuracy (Acc), sensitivity (SE), specificity (SP), reliability (R) and Matthews correlation coefficient (MCC) of 98.0%, 89.9%, 100%, 0.95 and 0.94 respectively. The results indicate that the local sequence information‐based method is better than the global sequence information‐based method to classify Kv channels.
Edited by
Juan LIU</abstract><cop>Melbourne, Australia</cop><pub>Blackwell Publishing Asia</pub><pmid>16761093</pmid><doi>10.1111/j.1745-7270.2006.00177.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-9145 |
ispartof | Acta biochimica et biophysica Sinica, 2006-06, Vol.38 (6), p.363-371 |
issn | 1672-9145 1745-7270 |
language | eng |
recordid | cdi_proquest_miscellaneous_68053475 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Animals Artificial Intelligence classification Computational Biology - methods dipeptide composition Humans Models, Biological Models, Statistical Peptides - chemistry Potassium Channels, Voltage-Gated - classification Potassium Channels, Voltage-Gated - genetics Reproducibility of Results Sensitivity and Specificity Sequence Alignment Sequence Analysis, Protein - methods support vector machine transmembrane domain voltage‐gated potassium channel |
title | Local Sequence Information‐based Support Vector Machine to Classify Voltage‐gated Potassium Channels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A17%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Sequence%20Information%E2%80%90based%20Support%20Vector%20Machine%20to%20Classify%20Voltage%E2%80%90gated%20Potassium%20Channels&rft.jtitle=Acta%20biochimica%20et%20biophysica%20Sinica&rft.au=LIU,%20Li%E2%80%90Xia&rft.date=2006-06&rft.volume=38&rft.issue=6&rft.spage=363&rft.epage=371&rft.pages=363-371&rft.issn=1672-9145&rft.eissn=1745-7270&rft_id=info:doi/10.1111/j.1745-7270.2006.00177.x&rft_dat=%3Cproquest_cross%3E68053475%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4177-3e5b074921b14c6704c3f446bfaaee8cb3fa0adf4d89fd94fbcaf6f1a2ca6a643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68053475&rft_id=info:pmid/16761093&rfr_iscdi=true |