Loading…

Hibernation induction trigger reduces hypoxic damage of swine skeletal muscle

A link between the cardioprotective benefits of pharmacological preconditioning and natural mammalian hibernation is considered to involve the cellular activation of opioid receptors and subsequent opening of KATP channels. In previous studies, we have demonstrated the protective effects of specific...

Full description

Saved in:
Bibliographic Details
Published in:Muscle & nerve 2005-08, Vol.32 (2), p.200-207
Main Authors: Hong, Jinback, Sigg, Daniel C., Coles Jr, James A., Oeltgen, Peter R., Harlow, Henry J., Soule, Charles L., Iaizzo, Paul A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4574-b01f685737c50f5cbcb5061a4a090945fab3ee973467ae67fb7e564f15c0d7053
cites cdi_FETCH-LOGICAL-c4574-b01f685737c50f5cbcb5061a4a090945fab3ee973467ae67fb7e564f15c0d7053
container_end_page 207
container_issue 2
container_start_page 200
container_title Muscle & nerve
container_volume 32
creator Hong, Jinback
Sigg, Daniel C.
Coles Jr, James A.
Oeltgen, Peter R.
Harlow, Henry J.
Soule, Charles L.
Iaizzo, Paul A.
description A link between the cardioprotective benefits of pharmacological preconditioning and natural mammalian hibernation is considered to involve the cellular activation of opioid receptors and subsequent opening of KATP channels. In previous studies, we have demonstrated the protective effects of specific δ‐opioid agonists against porcine cardiac ischemia/reperfusion injury. We hypothesize here that preincubation with hibernation induction trigger (HIT) should confer a similar protection in skeletal muscles. Therefore, muscle bundles from swine were pretreated with plasma from hibernating woodchucks (HWP) for 30 min, then exposed to hypoxia for 90 min and reoxygenation for 120 min. Stimulated twitch forces were assessed. The functional effects of pretreatment with nonhibernation (summer) woodchuck plasma, a KATP blocker, or opioid antagonist were also studied. During the reoxygenation period, significantly greater force recoveries were observed only for bundles pretreated with HWP; this response was blocked by naloxone (P < 0.05). We conclude that HIT pretreatment could be used to confer protection against hypoxia/reperfusion injury of skeletal muscles of nonhibernators; it could potentially be utilized to prevent injury during surgical procedures requiring ischemia. © 2005 Wiley Periodicals, Inc. Muscle Nerve, 2005
doi_str_mv 10.1002/mus.20354
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68060171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68060171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4574-b01f685737c50f5cbcb5061a4a090945fab3ee973467ae67fb7e564f15c0d7053</originalsourceid><addsrcrecordid>eNp10MtOGzEUBmALgSClXfQFqtmAxGLgOL6NlxWUUCBppRbRneVxjlOXuaT2jCBvz0ACrFj5yPrORT8hnykcU4DxSd2n4zEwwbfIiIJWORe62CYjoLzIJdN_9siHlP4BAC2k2iV7VGgOUsOITC9CibGxXWibLDTz3j1XXQyLBcYs4vCDKfu7WrYPwWVzW9sFZq3P0n1oMEt3WGFnq2w4wVX4kex4WyX8tHn3yc35t9-nF_n1j8n306_XueNC8bwE6mUhFFNOgBeudKUASS23oEFz4W3JELViXCqLUvlSoZDcU-FgrkCwfXK4nruM7f8eU2fqkBxWlW2w7ZORBUigig7waA1dbFOK6M0yhtrGlaFgnrIzw-HmObvBftkM7csa529yE9YADjbAJmcrH23jQnpzUhecwXhwJ2t3Hypcvb_RTG9-vazO1x0hdfjw2mHjnZFDSsLcziZmMrs8K36yK3PLHgGUC5UT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68060171</pqid></control><display><type>article</type><title>Hibernation induction trigger reduces hypoxic damage of swine skeletal muscle</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Hong, Jinback ; Sigg, Daniel C. ; Coles Jr, James A. ; Oeltgen, Peter R. ; Harlow, Henry J. ; Soule, Charles L. ; Iaizzo, Paul A.</creator><creatorcontrib>Hong, Jinback ; Sigg, Daniel C. ; Coles Jr, James A. ; Oeltgen, Peter R. ; Harlow, Henry J. ; Soule, Charles L. ; Iaizzo, Paul A.</creatorcontrib><description>A link between the cardioprotective benefits of pharmacological preconditioning and natural mammalian hibernation is considered to involve the cellular activation of opioid receptors and subsequent opening of KATP channels. In previous studies, we have demonstrated the protective effects of specific δ‐opioid agonists against porcine cardiac ischemia/reperfusion injury. We hypothesize here that preincubation with hibernation induction trigger (HIT) should confer a similar protection in skeletal muscles. Therefore, muscle bundles from swine were pretreated with plasma from hibernating woodchucks (HWP) for 30 min, then exposed to hypoxia for 90 min and reoxygenation for 120 min. Stimulated twitch forces were assessed. The functional effects of pretreatment with nonhibernation (summer) woodchuck plasma, a KATP blocker, or opioid antagonist were also studied. During the reoxygenation period, significantly greater force recoveries were observed only for bundles pretreated with HWP; this response was blocked by naloxone (P &lt; 0.05). We conclude that HIT pretreatment could be used to confer protection against hypoxia/reperfusion injury of skeletal muscles of nonhibernators; it could potentially be utilized to prevent injury during surgical procedures requiring ischemia. © 2005 Wiley Periodicals, Inc. Muscle Nerve, 2005</description><identifier>ISSN: 0148-639X</identifier><identifier>EISSN: 1097-4598</identifier><identifier>DOI: 10.1002/mus.20354</identifier><identifier>PMID: 15940690</identifier><identifier>CODEN: MUNEDE</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Biological and medical sciences ; Blood Proteins - metabolism ; Blood Proteins - pharmacology ; Electrodiagnosis. Electric activity recording ; Fundamental and applied biological sciences. Psychology ; Hibernation - physiology ; hibernation induction trigger ; Hypoxia - drug therapy ; Hypoxia - physiopathology ; Hypoxia - prevention &amp; control ; Investigative techniques, diagnostic techniques (general aspects) ; Ischemic Preconditioning - methods ; isometric twitch force ; Marmota - physiology ; Medical sciences ; Mitochondria - drug effects ; Mitochondria - metabolism ; Muscle Contraction - drug effects ; Muscle Contraction - physiology ; Muscle Fatigue - drug effects ; Muscle Fatigue - physiology ; muscle hypoxia ; Muscle, Skeletal - drug effects ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - physiopathology ; Narcotic Antagonists - pharmacology ; Nervous system ; opioid blockers ; Potassium Channel Blockers - pharmacology ; Potassium Channels - drug effects ; Potassium Channels - metabolism ; Proteins - metabolism ; Proteins - pharmacology ; Receptors, Opioid - drug effects ; Receptors, Opioid - metabolism ; Recovery of Function - drug effects ; Recovery of Function - physiology ; reperfusion injury ; Reperfusion Injury - drug therapy ; Reperfusion Injury - physiopathology ; Reperfusion Injury - prevention &amp; control ; Seasons ; Striated muscle. Tendons ; Sus scrofa ; Vertebrates: osteoarticular system, musculoskeletal system</subject><ispartof>Muscle &amp; nerve, 2005-08, Vol.32 (2), p.200-207</ispartof><rights>Copyright © 2005 Wiley Periodicals, Inc.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4574-b01f685737c50f5cbcb5061a4a090945fab3ee973467ae67fb7e564f15c0d7053</citedby><cites>FETCH-LOGICAL-c4574-b01f685737c50f5cbcb5061a4a090945fab3ee973467ae67fb7e564f15c0d7053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16984302$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15940690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hong, Jinback</creatorcontrib><creatorcontrib>Sigg, Daniel C.</creatorcontrib><creatorcontrib>Coles Jr, James A.</creatorcontrib><creatorcontrib>Oeltgen, Peter R.</creatorcontrib><creatorcontrib>Harlow, Henry J.</creatorcontrib><creatorcontrib>Soule, Charles L.</creatorcontrib><creatorcontrib>Iaizzo, Paul A.</creatorcontrib><title>Hibernation induction trigger reduces hypoxic damage of swine skeletal muscle</title><title>Muscle &amp; nerve</title><addtitle>Muscle Nerve</addtitle><description>A link between the cardioprotective benefits of pharmacological preconditioning and natural mammalian hibernation is considered to involve the cellular activation of opioid receptors and subsequent opening of KATP channels. In previous studies, we have demonstrated the protective effects of specific δ‐opioid agonists against porcine cardiac ischemia/reperfusion injury. We hypothesize here that preincubation with hibernation induction trigger (HIT) should confer a similar protection in skeletal muscles. Therefore, muscle bundles from swine were pretreated with plasma from hibernating woodchucks (HWP) for 30 min, then exposed to hypoxia for 90 min and reoxygenation for 120 min. Stimulated twitch forces were assessed. The functional effects of pretreatment with nonhibernation (summer) woodchuck plasma, a KATP blocker, or opioid antagonist were also studied. During the reoxygenation period, significantly greater force recoveries were observed only for bundles pretreated with HWP; this response was blocked by naloxone (P &lt; 0.05). We conclude that HIT pretreatment could be used to confer protection against hypoxia/reperfusion injury of skeletal muscles of nonhibernators; it could potentially be utilized to prevent injury during surgical procedures requiring ischemia. © 2005 Wiley Periodicals, Inc. Muscle Nerve, 2005</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Blood Proteins - metabolism</subject><subject>Blood Proteins - pharmacology</subject><subject>Electrodiagnosis. Electric activity recording</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hibernation - physiology</subject><subject>hibernation induction trigger</subject><subject>Hypoxia - drug therapy</subject><subject>Hypoxia - physiopathology</subject><subject>Hypoxia - prevention &amp; control</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Ischemic Preconditioning - methods</subject><subject>isometric twitch force</subject><subject>Marmota - physiology</subject><subject>Medical sciences</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Muscle Contraction - drug effects</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle Fatigue - drug effects</subject><subject>Muscle Fatigue - physiology</subject><subject>muscle hypoxia</subject><subject>Muscle, Skeletal - drug effects</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - physiopathology</subject><subject>Narcotic Antagonists - pharmacology</subject><subject>Nervous system</subject><subject>opioid blockers</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>Potassium Channels - drug effects</subject><subject>Potassium Channels - metabolism</subject><subject>Proteins - metabolism</subject><subject>Proteins - pharmacology</subject><subject>Receptors, Opioid - drug effects</subject><subject>Receptors, Opioid - metabolism</subject><subject>Recovery of Function - drug effects</subject><subject>Recovery of Function - physiology</subject><subject>reperfusion injury</subject><subject>Reperfusion Injury - drug therapy</subject><subject>Reperfusion Injury - physiopathology</subject><subject>Reperfusion Injury - prevention &amp; control</subject><subject>Seasons</subject><subject>Striated muscle. Tendons</subject><subject>Sus scrofa</subject><subject>Vertebrates: osteoarticular system, musculoskeletal system</subject><issn>0148-639X</issn><issn>1097-4598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp10MtOGzEUBmALgSClXfQFqtmAxGLgOL6NlxWUUCBppRbRneVxjlOXuaT2jCBvz0ACrFj5yPrORT8hnykcU4DxSd2n4zEwwbfIiIJWORe62CYjoLzIJdN_9siHlP4BAC2k2iV7VGgOUsOITC9CibGxXWibLDTz3j1XXQyLBcYs4vCDKfu7WrYPwWVzW9sFZq3P0n1oMEt3WGFnq2w4wVX4kex4WyX8tHn3yc35t9-nF_n1j8n306_XueNC8bwE6mUhFFNOgBeudKUASS23oEFz4W3JELViXCqLUvlSoZDcU-FgrkCwfXK4nruM7f8eU2fqkBxWlW2w7ZORBUigig7waA1dbFOK6M0yhtrGlaFgnrIzw-HmObvBftkM7csa529yE9YADjbAJmcrH23jQnpzUhecwXhwJ2t3Hypcvb_RTG9-vazO1x0hdfjw2mHjnZFDSsLcziZmMrs8K36yK3PLHgGUC5UT</recordid><startdate>200508</startdate><enddate>200508</enddate><creator>Hong, Jinback</creator><creator>Sigg, Daniel C.</creator><creator>Coles Jr, James A.</creator><creator>Oeltgen, Peter R.</creator><creator>Harlow, Henry J.</creator><creator>Soule, Charles L.</creator><creator>Iaizzo, Paul A.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200508</creationdate><title>Hibernation induction trigger reduces hypoxic damage of swine skeletal muscle</title><author>Hong, Jinback ; Sigg, Daniel C. ; Coles Jr, James A. ; Oeltgen, Peter R. ; Harlow, Henry J. ; Soule, Charles L. ; Iaizzo, Paul A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4574-b01f685737c50f5cbcb5061a4a090945fab3ee973467ae67fb7e564f15c0d7053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Blood Proteins - metabolism</topic><topic>Blood Proteins - pharmacology</topic><topic>Electrodiagnosis. Electric activity recording</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hibernation - physiology</topic><topic>hibernation induction trigger</topic><topic>Hypoxia - drug therapy</topic><topic>Hypoxia - physiopathology</topic><topic>Hypoxia - prevention &amp; control</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Ischemic Preconditioning - methods</topic><topic>isometric twitch force</topic><topic>Marmota - physiology</topic><topic>Medical sciences</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Muscle Contraction - drug effects</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle Fatigue - drug effects</topic><topic>Muscle Fatigue - physiology</topic><topic>muscle hypoxia</topic><topic>Muscle, Skeletal - drug effects</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - physiopathology</topic><topic>Narcotic Antagonists - pharmacology</topic><topic>Nervous system</topic><topic>opioid blockers</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>Potassium Channels - drug effects</topic><topic>Potassium Channels - metabolism</topic><topic>Proteins - metabolism</topic><topic>Proteins - pharmacology</topic><topic>Receptors, Opioid - drug effects</topic><topic>Receptors, Opioid - metabolism</topic><topic>Recovery of Function - drug effects</topic><topic>Recovery of Function - physiology</topic><topic>reperfusion injury</topic><topic>Reperfusion Injury - drug therapy</topic><topic>Reperfusion Injury - physiopathology</topic><topic>Reperfusion Injury - prevention &amp; control</topic><topic>Seasons</topic><topic>Striated muscle. Tendons</topic><topic>Sus scrofa</topic><topic>Vertebrates: osteoarticular system, musculoskeletal system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Jinback</creatorcontrib><creatorcontrib>Sigg, Daniel C.</creatorcontrib><creatorcontrib>Coles Jr, James A.</creatorcontrib><creatorcontrib>Oeltgen, Peter R.</creatorcontrib><creatorcontrib>Harlow, Henry J.</creatorcontrib><creatorcontrib>Soule, Charles L.</creatorcontrib><creatorcontrib>Iaizzo, Paul A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Muscle &amp; nerve</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Jinback</au><au>Sigg, Daniel C.</au><au>Coles Jr, James A.</au><au>Oeltgen, Peter R.</au><au>Harlow, Henry J.</au><au>Soule, Charles L.</au><au>Iaizzo, Paul A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hibernation induction trigger reduces hypoxic damage of swine skeletal muscle</atitle><jtitle>Muscle &amp; nerve</jtitle><addtitle>Muscle Nerve</addtitle><date>2005-08</date><risdate>2005</risdate><volume>32</volume><issue>2</issue><spage>200</spage><epage>207</epage><pages>200-207</pages><issn>0148-639X</issn><eissn>1097-4598</eissn><coden>MUNEDE</coden><abstract>A link between the cardioprotective benefits of pharmacological preconditioning and natural mammalian hibernation is considered to involve the cellular activation of opioid receptors and subsequent opening of KATP channels. In previous studies, we have demonstrated the protective effects of specific δ‐opioid agonists against porcine cardiac ischemia/reperfusion injury. We hypothesize here that preincubation with hibernation induction trigger (HIT) should confer a similar protection in skeletal muscles. Therefore, muscle bundles from swine were pretreated with plasma from hibernating woodchucks (HWP) for 30 min, then exposed to hypoxia for 90 min and reoxygenation for 120 min. Stimulated twitch forces were assessed. The functional effects of pretreatment with nonhibernation (summer) woodchuck plasma, a KATP blocker, or opioid antagonist were also studied. During the reoxygenation period, significantly greater force recoveries were observed only for bundles pretreated with HWP; this response was blocked by naloxone (P &lt; 0.05). We conclude that HIT pretreatment could be used to confer protection against hypoxia/reperfusion injury of skeletal muscles of nonhibernators; it could potentially be utilized to prevent injury during surgical procedures requiring ischemia. © 2005 Wiley Periodicals, Inc. Muscle Nerve, 2005</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15940690</pmid><doi>10.1002/mus.20354</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-639X
ispartof Muscle & nerve, 2005-08, Vol.32 (2), p.200-207
issn 0148-639X
1097-4598
language eng
recordid cdi_proquest_miscellaneous_68060171
source Wiley-Blackwell Read & Publish Collection
subjects Animals
Biological and medical sciences
Blood Proteins - metabolism
Blood Proteins - pharmacology
Electrodiagnosis. Electric activity recording
Fundamental and applied biological sciences. Psychology
Hibernation - physiology
hibernation induction trigger
Hypoxia - drug therapy
Hypoxia - physiopathology
Hypoxia - prevention & control
Investigative techniques, diagnostic techniques (general aspects)
Ischemic Preconditioning - methods
isometric twitch force
Marmota - physiology
Medical sciences
Mitochondria - drug effects
Mitochondria - metabolism
Muscle Contraction - drug effects
Muscle Contraction - physiology
Muscle Fatigue - drug effects
Muscle Fatigue - physiology
muscle hypoxia
Muscle, Skeletal - drug effects
Muscle, Skeletal - metabolism
Muscle, Skeletal - physiopathology
Narcotic Antagonists - pharmacology
Nervous system
opioid blockers
Potassium Channel Blockers - pharmacology
Potassium Channels - drug effects
Potassium Channels - metabolism
Proteins - metabolism
Proteins - pharmacology
Receptors, Opioid - drug effects
Receptors, Opioid - metabolism
Recovery of Function - drug effects
Recovery of Function - physiology
reperfusion injury
Reperfusion Injury - drug therapy
Reperfusion Injury - physiopathology
Reperfusion Injury - prevention & control
Seasons
Striated muscle. Tendons
Sus scrofa
Vertebrates: osteoarticular system, musculoskeletal system
title Hibernation induction trigger reduces hypoxic damage of swine skeletal muscle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hibernation%20induction%20trigger%20reduces%20hypoxic%20damage%20of%20swine%20skeletal%20muscle&rft.jtitle=Muscle%20&%20nerve&rft.au=Hong,%20Jinback&rft.date=2005-08&rft.volume=32&rft.issue=2&rft.spage=200&rft.epage=207&rft.pages=200-207&rft.issn=0148-639X&rft.eissn=1097-4598&rft.coden=MUNEDE&rft_id=info:doi/10.1002/mus.20354&rft_dat=%3Cproquest_cross%3E68060171%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4574-b01f685737c50f5cbcb5061a4a090945fab3ee973467ae67fb7e564f15c0d7053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68060171&rft_id=info:pmid/15940690&rfr_iscdi=true