Loading…
Effect of chaotic mixing on enhanced biological growth and implications for wastewater treatment: A test case with Saccharomyces cerevisiae
Mixing patterns and modes have a great influence on the efficiency of biological treatment systems. A series of laboratory experiments was conducted with a controlled, small-scale analog of a pilot wastewater aeration tank, consisting of two eccentrically placed cylinders. By controlling the rotatio...
Saved in:
Published in: | Journal of hazardous materials 2006-08, Vol.136 (1), p.130-136 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mixing patterns and modes have a great influence on the efficiency of biological treatment systems. A series of laboratory experiments was conducted with a controlled, small-scale analog of a pilot wastewater aeration tank, consisting of two eccentrically placed cylinders. By controlling the rotation direction and speed of the two cylinders, it has been possible to develop chaotic flow fields in the space between the walls of the cylinders. Our experiments utilized
Saccharomyces cerevisiae as the biological oxidation organism and air bubbles as the mixing agent supplied by a large fine pore diffuser to the cells in their exponential growth phase. The effect of various mixing patterns on cell growth was studied at different cylinder eccentricities, rotation directions and speeds. It was found that chaotic advection flow patterns: (a) enhanced growth, and (b) sped up the onset of maximal growth of the organism by 15–18% and 14–20%, respectively. |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2005.11.039 |