Loading…

Energy efficient and robust rhythmic limb movement by central pattern generators

Humans show great energy efficiency and robustness in rhythmic tasks, such as walking and arm swinging. In this study a mathematical model of rhythmic limb movement is presented, which shows that tight local coupling of Central Pattern Generators (CPGs) to limbs could explain part of this behavior....

Full description

Saved in:
Bibliographic Details
Published in:Neural networks 2006-05, Vol.19 (4), p.388-400
Main Authors: Verdaasdonk, B.W., Koopman, H.F.J.M., Helm, F.C.T. Van Der
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Humans show great energy efficiency and robustness in rhythmic tasks, such as walking and arm swinging. In this study a mathematical model of rhythmic limb movement is presented, which shows that tight local coupling of Central Pattern Generators (CPGs) to limbs could explain part of this behavior. Afferent feedback to flexor and extensor centers of the CPG is crucial in providing energy efficiency by means of resonance tuning. Feedback of positional information provides resonance tuning above the endogenous frequency of the CPG. Integral feedback provides resonance tuning at and below the endogenous frequency. Feedback of velocity information is necessary to compensate for the time delay in the loop, coupling limb to CPG; without velocity feedback bi-stability occurs and resonance tuning is not possible at high movement frequencies. The concepts of energy efficient and robust control of rhythmic limb movements are also applicable to robotics. It is the first CPG model, which provides resonance tuning at natural limb frequencies above and below its endogenous frequency.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2005.09.003